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Interrupts
• An interrupt is a hardware mechanism used to inform the CPU that

an asynchronous event had occurred.

• The CPU saves the context of the current running task and jumps 
to the corresponding service routine (ISR).

• Common interrupts: clock tick (triggering scheduling), I/O events, 
hardware errors. 

• Disabling interrupts affects interrupt latency. 

• The ISR processes the event, and upon completion of the ISR, the
program returns to

– The background for a foreground/background system
– The interrupted task for a non-preemptive kernel
– The highest priority task ready to run for a preemptive kernel
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Interrupt Latency
• Real-time systems disable interrupts to 

manipulate critical sections of code and enable 
interrupts when critical section has executed.

• The longer interrupts disabled, the higher the 
interrupt latency is.

interrupt latency  = 
max. amount of interrupts are disabled  + 

Time to start executing the first instruction in the ISR



Interrupt Response
• Interrupt response: the time between the reception of the 

interrupt and the start of the user code that handles the 
interrupt – accounts for all the overhead involved in 
handling an interrupt

• For a foreground/background system and a non-preemptive 
kernel:
Response time = Interrupt latency + Time to save the CPU’s context

• For preemptive kernel
Response time = Interrupt latency + Time to save the CPU’s context + 
Execution time of the kernel ISR entry function

( to notify the kernel that an ISR is in progress and allows kernel to 
keep track of interrupt nesting, OSIntEnter( ) in uC/OS-2)



Interrupt Recovery
• The time required for the processor to return to the 

interrupted code.

• For a foreground/background system and a non-preemptive 
kernel:
Interrupt recovery 
= Time to restore the CPU’s context 

+ Time to execute the return from interrupt instruction

• For preemptive kernel:
Interrupt recovery 
= Time to determine if a higher priority task is ready 

+ Time to restore the CPU’s context of the highest priority task
+ Time to execute the return from interrupt instruction



ISR Processing Time
• ISRs should be as short as possible.

– there are no absolute limits on the amount of time for an ISR.

• If the ISR code is the most important code that needs to 
run at any given time, it could be as long as it needs to be.

• In most cases, the ISR should
– Recognize the interrupt
– Obtain data or status from the interrupting device
– Signal a task to perform a actual processing

• Overhead involved in signaling task 
– the processing of the interrupt
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Non-Maskable
Interrupts

• NMI’s can not be disabled.
– They are generally reserved for drastic events, such as 

the power-source is almost exhausted.

• You can not use kernel services to signal a task in 
ISR’s of NMI’s.
– Since interrupts can not be disabled in the ISR of an 

NMI.
– The size of global variable under this situation must be 

atomic. (i.e., byte, word, dword)
– Or, we can trigger another hardware interrupt which’s 

ISR uses kernel services to signal the desired task.
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Non-Maskable
Interrupts

Interrupt latency
= Time to execute longest instruction

+ Time to start executing the NMI ISR 

Interrupt response
= Interrupt latency 

+ Time to save the CPU’s context

Interrupt recovery 
= Time to restore the CPU’s context 

+ Time to execute the return from interrupt instruction

• NMI can still be disable by adding external circuits.
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Clock Tick
• Clock tick is a periodically hardware event 

(interrupt) generated by a timer.

• The kernel utilize the timer to delay tasks and to 
periodically perform scheduling.

• The higher the tick rate, 
– the better the responsiveness is.
– the better the schedulability is. 

• Blocking due to clock tick resolution.
– the higher the overhead is.



Tick Interrupt

Tick ISR

All higher priority tasks

Delayed Task

t1
t2

t3

20 mS

(19 mS)
(17 mS)

(27 mS)

Call to delay 1 tick (20 mS)Call to delay 1 tick (20 mS) Call to delay 1 tick (20 mS)

• A task delaying itself for one tick
• Higher priority tasks and ISRs execute prior to the task, 

which needs to delay for 1 tick 
• A jitter occurs.
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• The execution times of all higher priority tasks and 
ISRs are slightly less than 1 tick 

• As a result, if you need to delay at least one tick, you 
must  specify one extra tick
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• The execution times of all higher priority tasks and 
ISRs are more than 1 clock tick. 

• The task that tries to delay for 1 tick actually 
executes two ticks later and violates its deadline.



Memory Requirements
• Most real-time applications are embedded systems. Memory 

requirements must be analyzable.

• A preemptible kernel requires more RAM/ROM space.

• Code size (ROM) = kernel size + application size

• RAM requirements can be significantly reduced if
– Stack size of every task can be differently specified
– A separate stack is used to handle ISR’s. (uC/OS-2 doesn’t, DOS does)

• RAM requirement = application requirement + kernel requirement +
SUM(task stacks + MAX(ISR nesting))

• RAM requirement = application requirement + kernel requirement +
SUM(task stacks) + MAX(ISR nesting)

– If a separate stack is prepared for ISR’s.



Memory Requirements
• We must be careful on the usages of 

tasks’ stacks:
– Large arrays and structures as local 

variables.
– Recursive function call.
– ISR nesting.
– Function calls with many arguments.



Advantages and Disadvantages 
of Real-Time Kernels

• A real-time kernel (RTOS) allows real-time applications to be 
designed and expanded easily.

– Functions can be added without requiring major changes to the 
software.

• The use of RTOS simplifies the design process by splitting the 
application code into separate tasks.

• With a preemptive RTOS, all time-critical events are handled as 
quickly and as efficiently as possible.

• An RTOS allows you to make better use of your resources by 
providing you with valuable services – semaphores, mailboxes, 
queues, time delays, timeouts, etc.
- Extra cost of the kernel.
- More ROM/RAM space.
- 2 to 4 percent additional CPU overhead.
- Cost of the RTOS: $70 ~ $30,000 !
- The maintenance cost: $100 ~ $5,000 per year !
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