
TASKISR POST PEND
Queue

Interrupt
0

10

Interrupts
• An interrupt is a hardware mechanism used to inform the CPU that

an asynchronous event had occurred.

• The CPU saves the context of the current running task and jumps
to the corresponding service routine (ISR).

• Common interrupts: clock tick (triggering scheduling), I/O events,
hardware errors.

• Disabling interrupts affects interrupt latency.

• The ISR processes the event, and upon completion of the ISR, the
program returns to

– The background for a foreground/background system
– The interrupted task for a non-preemptive kernel
– The highest priority task ready to run for a preemptive kernel

TIME

TASK

ISR #1

ISR #2

ISR #3

Interrupt #1

Interrupt #2

Interrupt #3

Interrupt Latency
• Real-time systems disable interrupts to

manipulate critical sections of code and enable
interrupts when critical section has executed.

• The longer interrupts disabled, the higher the
interrupt latency is.

interrupt latency =
max. amount of interrupts are disabled +

Time to start executing the first instruction in the ISR

Interrupt Response
• Interrupt response: the time between the reception of the

interrupt and the start of the user code that handles the
interrupt – accounts for all the overhead involved in
handling an interrupt

• For a foreground/background system and a non-preemptive
kernel:
Response time = Interrupt latency + Time to save the CPU’s context

• For preemptive kernel
Response time = Interrupt latency + Time to save the CPU’s context +
Execution time of the kernel ISR entry function

(to notify the kernel that an ISR is in progress and allows kernel to
keep track of interrupt nesting, OSIntEnter() in uC/OS-2)

Interrupt Recovery
• The time required for the processor to return to the

interrupted code.

• For a foreground/background system and a non-preemptive
kernel:
Interrupt recovery
= Time to restore the CPU’s context

+ Time to execute the return from interrupt instruction

• For preemptive kernel:
Interrupt recovery
= Time to determine if a higher priority task is ready

+ Time to restore the CPU’s context of the highest priority task
+ Time to execute the return from interrupt instruction

ISR Processing Time
• ISRs should be as short as possible.

– there are no absolute limits on the amount of time for an ISR.

• If the ISR code is the most important code that needs to
run at any given time, it could be as long as it needs to be.

• In most cases, the ISR should
– Recognize the interrupt
– Obtain data or status from the interrupting device
– Signal a task to perform a actual processing

• Overhead involved in signaling task
– the processing of the interrupt

BACKGROUND

CPU Context Saved

Interrupt Request

Interrupt Latency

Interrupt Response Interrupt Recovery

BACKGROUND

ISR
User ISR Code

TIME

CPU context
restored

Interrupt latency, response,
and recovery

(Foreground/Background)

Interrupt latency, response,
and recovery

(Non-preemptive kernel)

TASK

CPU Context Saved

Interrupt Request

Interrupt Latency

Interrupt Response Interrupt Recovery

TASK

ISR
User ISR Code

TIME

CPU context
restored

Interrupt latency, response,
and recovery

(Preemptive kernel)

TASK

CPU Context Saved

Kernel's ISR
Entry function

Interrupt Request

Interrupt Latency

Interrupt Response

Interrupt Recovery

TASK

ISR

Kernel's ISR
Exit function

User ISR Code

TIME

CPU context
restored

Kernel's ISR
Exit function

CPU context
restored

TASK

Interrupt Recovery

A

B

Non-Maskable
Interrupts

• NMI’s can not be disabled.
– They are generally reserved for drastic events, such as

the power-source is almost exhausted.

• You can not use kernel services to signal a task in
ISR’s of NMI’s.
– Since interrupts can not be disabled in the ISR of an

NMI.
– The size of global variable under this situation must be

atomic. (i.e., byte, word, dword)
– Or, we can trigger another hardware interrupt which’s

ISR uses kernel services to signal the desired task.

Signaling a task from the
ISR of an NMI

NMI
ISR ISR

Semaphore

TASKNMI Interrupt

Issues interrupt by writing
to an output port.

POST PEND

Non-Maskable
Interrupts

Interrupt latency
= Time to execute longest instruction

+ Time to start executing the NMI ISR

Interrupt response
= Interrupt latency

+ Time to save the CPU’s context

Interrupt recovery
= Time to restore the CPU’s context

+ Time to execute the return from interrupt instruction

• NMI can still be disable by adding external circuits.

To Processor's NMI Input

NMI Interrupt Source

Output
Port

Disabling NMI’s

Clock Tick
• Clock tick is a periodically hardware event

(interrupt) generated by a timer.

• The kernel utilize the timer to delay tasks and to
periodically perform scheduling.

• The higher the tick rate,
– the better the responsiveness is.
– the better the schedulability is.

• Blocking due to clock tick resolution.
– the higher the overhead is.

Tick Interrupt

Tick ISR

All higher priority tasks

Delayed Task

t1
t2

t3

20 mS

(19 mS)
(17 mS)

(27 mS)

Call to delay 1 tick (20 mS)Call to delay 1 tick (20 mS) Call to delay 1 tick (20 mS)

• A task delaying itself for one tick
• Higher priority tasks and ISRs execute prior to the task,

which needs to delay for 1 tick
• A jitter occurs.

Tick Interrupt

Tick ISR

All higher priority tasks

Delayed Task

t1 t2
t3

20 mS

(6 mS) (19 mS)
(27 mS)

Call to delay 1 tick (20 mS)Call to delay 1 tick (20 mS) Call to delay 1 tick (20 mS)

• The execution times of all higher priority tasks and
ISRs are slightly less than 1 tick

• As a result, if you need to delay at least one tick, you
must specify one extra tick

Tick Interrupt

Tick ISR

All higher priority tasks

Delayed Task

t1
t2

20 mS

(40 mS)
(26 mS)

Call to delay 1 tick (20 mS) Call to delay 1 tick (20 mS)

• The execution times of all higher priority tasks and
ISRs are more than 1 clock tick.

• The task that tries to delay for 1 tick actually
executes two ticks later and violates its deadline.

Memory Requirements
• Most real-time applications are embedded systems. Memory

requirements must be analyzable.

• A preemptible kernel requires more RAM/ROM space.

• Code size (ROM) = kernel size + application size

• RAM requirements can be significantly reduced if
– Stack size of every task can be differently specified
– A separate stack is used to handle ISR’s. (uC/OS-2 doesn’t, DOS does)

• RAM requirement = application requirement + kernel requirement +
SUM(task stacks + MAX(ISR nesting))

• RAM requirement = application requirement + kernel requirement +
SUM(task stacks) + MAX(ISR nesting)

– If a separate stack is prepared for ISR’s.

Memory Requirements
• We must be careful on the usages of

tasks’ stacks:
– Large arrays and structures as local

variables.
– Recursive function call.
– ISR nesting.
– Function calls with many arguments.

Advantages and Disadvantages
of Real-Time Kernels

• A real-time kernel (RTOS) allows real-time applications to be
designed and expanded easily.

– Functions can be added without requiring major changes to the
software.

• The use of RTOS simplifies the design process by splitting the
application code into separate tasks.

• With a preemptive RTOS, all time-critical events are handled as
quickly and as efficiently as possible.

• An RTOS allows you to make better use of your resources by
providing you with valuable services – semaphores, mailboxes,
queues, time delays, timeouts, etc.
- Extra cost of the kernel.
- More ROM/RAM space.
- 2 to 4 percent additional CPU overhead.
- Cost of the RTOS: $70 ~ $30,000 !
- The maintenance cost: $100 ~ $5,000 per year !

Real-Time Systems Summary

YesYesApplication code must provideServices available?

Application code +
Kernel RAM +

SUM(Task stacks +
MAX(ISR stack))

Application code +
Kernel RAM +

SUM(Task stacks +
MAX(ISR stack))

Application codeRAM size

Application code +
Kernel code

Application code +
Kernel codeApplication codeROM size

Find highest priority task +
Context switch

Longest task +
Find highest priority task +

Context switch
BackgroundTask response

(Time)

Find highest priority task +
Restore highest priority task’s

context + Return from
interrupt

Restore task’s context +
Return from int.

Restore background’s context +
Return from int.

Interrupt recovery
(Time)

Interrupt latency +
Save CPU’s context +

Kernel ISR entry function
Int. latency + Save CPU’s contextInt. latency + Save CPU’s contextInterrupt response

(Time)

MAX(Longest instruction,
User int. disable, Kernel int.

disable) + Vector to ISR

MAX(Longest instruction, User
int. disable, Kernel int. disable) +

Vector to ISR

MAX(Longest instruction, User int.
disable) +

Vector to ISR

Interrupt Latency
(Time)

Preemptive KernelNon-Preemptive KernelForeground/Background

