
 Real-Time Opera ng System (RTOS) based Embedded System Design 389

10.1 OPERATING SYSTEM BASICS

The operating system acts as a bridge between the user applications/tasks and the

underlying system resources through a set of system functionalities and services.

The OS manages the system resources and makes them available to the user

applications/tasks on a need basis. A normal computing system is a collection of

different I/O subsystems, working, and storage memory. The primary functions

of an operating system is

Make the system convenient to use ∑

Organise and manage the system resources effi ciently and correctly ∑

Figure 10.1 gives an insight into the basic components of an operating system and their interfaces with

rest of the world.

User Applications

Underlying hardware

Memory management

Process management

Time management

File system management

I/O system management K
er

n
el

 S
er

v
ic

es
Application

programming

interface (API)

Device driver

interface

Fig. 10.1 The Operating System Architecture

10.1.1 The Kernel

The kernel is the core of the operating system and is responsible for managing the system resources and the

communication among the hardware and other system services. Kernel acts as the abstraction layer between

system resources and user applications. Kernel contains a set of system libraries and services. For a general

purpose OS, the kernel contains different services for handling the following.

 Process Management Process management deals with managing the processes/tasks. Process management

includes setting up the memory space for the process, loading the process’s code into the memory space,

allocating system resources, scheduling and managing the execution of the process, setting up and managing

the Process Control Block (PCB), Inter Process Communication and synchronisation, process termination/

deletion, etc. We will look into the description of process and process management in a later section of this

chapter.

 Primary Memory Management The term primary memory refers to the volatile memory (RAM) where

processes are loaded and variables and shared data associated with each process are stored. The Memory

Management Unit (MMU) of the kernel is responsible for

Keeping track of which part of the memory area is currently used by which process ∑

Allocating and De-allocating memory space on a need basis (Dynamic memory allocation). ∑

LO 1 Understand
the basics of an
operating system
and the need for an
operating system

390 Introduc on to Embedded Systems

 File System Management File is a collection of related information. A fi le could be a program (source code

or executable), text fi les, image fi les, word documents, audio/video fi les, etc. Each of these fi les differ in the

kind of information they hold and the way in which the information is stored. The fi le operation is a useful

service provided by the OS. The fi le system management service of Kernel is responsible for

The creation, deletion and alteration of fi les ∑

Creation, deletion and alteration of directories ∑

Saving of fi les in the secondary storage memory (e.g. Hard disk storage) ∑

Providing automatic allocation of fi le space based on the amount of free space available ∑

Providing a fl exible naming convention for the fi les ∑

The various fi le system management operations are OS dependent. For example, the kernel of Microsoft®

DOS OS supports a specifi c set of fi le system management operations and they are not the same as the fi le

system operations supported by UNIX Kernel.

 I/O System (Device) Management Kernel is responsible for routing the I/O requests coming from different

user applications to the appropriate I/O devices of the system. In a well-structured OS, the direct accessing

of I/O devices are not allowed and the access to them are provided through a set of Application Programming

Interfaces (APIs) exposed by the kernel. The kernel maintains a list of all the I/O devices of the system. This

list may be available in advance, at the time of building the kernel. Some kernels, dynamically updates the

list of available devices as and when a new device is installed (e.g. Windows NT kernel keeps the list updated

when a new plug ‘n’ play USB device is attached to the system). The service ‘Device Manager’ (Name may

vary across different OS kernels) of the kernel is responsible for handling all I/O device related operations.

The kernel talks to the I/O device through a set of low-level systems calls, which are implemented in a

service, called device drivers. The device drivers are specifi c to a device or a class of devices. The Device

Manager is responsible for

Loading and unloading of device drivers ∑

Exchanging information and the system specifi c control signals to and from the device ∑

Secondary Storage Management The secondary storage management deals with managing the secondary

storage memory devices, if any, connected to the system. Secondary memory is used as backup medium for

programs and data since the main memory is volatile. In most of the systems, the secondary storage is kept in

disks (Hard Disk). The secondary storage management service of kernel deals with

Disk storage allocation ∑

Disk scheduling (Time interval at which the disk is activated to backup data) ∑

Free Disk space management ∑

Protec on Systems Most of the modern operating systems are designed in such a way to support multiple

users with different levels of access permissions (e.g. Windows 10 with user permissions like ‘Administrator’,

‘Standard’, ‘Restricted’, etc.). Protection deals with implementing the security policies to restrict the access

to both user and system resources by different applications or processes or users. In multiuser supported

operating systems, one user may not be allowed to view or modify the whole/portions of another user’s data

or profi le details. In addition, some application may not be granted with permission to make use of some of

the system resources. This kind of protection is provided by the protection services running within the kernel.

Interrupt Handler Kernel provides handler mechanism for all external/internal interrupts generated by the

system.

These are some of the important services offered by the kernel of an operating system. It does not mean

that a kernel contains no more than components/services explained above. Depending on the type of the

 Real-Time Opera ng System (RTOS) based Embedded System Design 391

operating system, a kernel may contain lesser number of components/services or more number of components/

services. In addition to the components/services listed above, many operating systems offer a number of add-

on system components/services to the kernel. Network communication, network management, user-interface

graphics, timer services (delays, timeouts, etc.), error handler, database management, etc. are examples for

such components/services. Kernel exposes the interface to the various kernel applications/services, hosted by

kernel, to the user applications through a set of standard Application Programming Interfaces (APIs). User

applications can avail these API calls to access the various kernel application/services.

10.1.1.1 Kernel Space and User Space
As we discussed in the earlier section, the applications/services are classifi ed into two categories, namely:

user applications and kernel applications. The program code corresponding to the kernel applications/services

are kept in a contiguous area (OS dependent) of primary (working) memory and is protected from the un-

authorised access by user programs/applications. The memory space at which the kernel code is located is

known as ‘ Kernel Space’. Similarly, all user applications are loaded to a specifi c area of primary memory

and this memory area is referred as ‘ User Space’. User space is the memory area where user applications

are loaded and executed. The partitioning of memory into kernel and user space is purely Operating System

dependent. Some OS implements this kind of partitioning and protection whereas some OS do not segregate

the kernel and user application code storage into two separate areas. In an operating system with virtual

memory support, the user applications are loaded into its corresponding virtual memory space with demand

paging technique; Meaning, the entire code for the user application need not be loaded to the main (primary)

memory at once; instead the user application code is split into different pages and these pages are loaded into

and out of the main memory area on a need basis. The act of loading the code into and out of the main memory

is termed as ‘Swapping’. Swapping happens between the main (primary) memory and secondary storage

memory. Each process run in its own virtual memory space and are not allowed accessing the memory space

corresponding to another processes, unless explicitly requested by the process. Each process will have certain

privilege levels on accessing the memory of other processes and based on the privilege settings, processes can

request kernel to map another process’s memory to its own or share through some other mechanism. Most

of the operating systems keep the kernel application code in main memory and it is not swapped out into the

secondary memory.

10.1.1.2 Monolithic Kernel and Microkernel
As we know, the kernel forms the heart of an operating system. Different approaches are adopted for building

an Operating System kernel. Based on the kernel design, kernels can be classifi ed into ‘Monolithic’ and

‘Micro’.

 Monolithic Kernel In monolithic kernel architecture, all

kernel services run in the kernel space. Here all kernel

modules run within the same memory space under a

single kernel thread. The tight internal integration of

kernel modules in monolithic kernel architecture allows

the effective utilisation of the low-level features of the

underlying system. The major drawback of monolithic

kernel is that any error or failure in any one of the

kernel modules leads to the crashing of the entire kernel

application. LINUX, SOLARIS, MS-DOS kernels

are examples of monolithic kernel. The architecture

representation of a monolithic kernel is given in Fig. 10.2.

Applications

Monolithic kernel with all

operating system services

running in kernel space

Fig. 10.2 The Monolithic Kernel Model

392 Introduc on to Embedded Systems

 Microkernel The microkernel design incorporates

only the essential set of Operating System services

into the kernel. The rest of the Operating System

services are implemented in programs known as

‘Servers’ which runs in user space. This provides a

highly modular design and OS-neutral abstraction to

the kernel. Memory management, process

management, timer systems and interrupt handlers

are the essential services, which forms the part of

the microkernel. Mach, QNX, Minix 3 kernels are

examples for microkernel. The architecture

representation of a microkernel is shown in

Fig. 10.3.

Microkernel based design approach offers the

following benefi ts

Robustness: ∑ If a problem is encountered in any

of the services, which runs as ‘Server’ application, the same can be reconfi gured and re-started without

the need for re-starting the entire OS. Thus, this approach is highly useful for systems, which demands

high ‘availability’. Refer Chapter 3 to get an understanding of ‘availability’. Since the services which

run as ‘Servers’ are running on a different memory space, the chances of corruption of kernel services

are ideally zero.

Confi gurability: ∑ Any services, which run as ‘Server’ application can be changed without the need to

restart the whole system. This makes the system dynamically confi gurable.

10.2 TYPES OF OPERATING SYSTEMS

Depending on the type of kernel and kernel services, purpose and type of

computing systems where the OS is deployed and the responsiveness to

applications, Operating Systems are classifi ed into different types.

10.2.1 General Purpose Operating System (GPOS)

The operating systems, which are deployed in general computing systems, are referred as General Purpose

Operating Systems (GPOS). The kernel of such an OS is more generalised and it contains all kinds of

services required for executing generic applications. General-purpose operating systems are often quite

non-deterministic in behaviour. Their services can inject random delays into application software and may

cause slow responsiveness of an application at unexpected times. GPOS are usually deployed in computing

systems where deterministic behaviour is not an important criterion. Personal Computer/Desktop system is

a typical example for a system where GPOSs are deployed. Windows 10/8.x/XP/MS-DOS etc are examples

for General Purpose Operating Systems.

10.2.2 Real-Time Operating System (RTOS)

There is no universal defi nition available for the term ‘ Real-Time’ when it is used in conjunction with operating

systems. What ‘Real-Time’ means in Operating System context is still a debatable topic and there are many

defi nitions available. In a broad sense, ‘Real-Time’ implies deterministic timing behaviour. Deterministic

timing behaviour in RTOS context means the OS services consumes only known and expected amounts of

time regardless the number of services. A Real-Time Operating System or RTOS implements policies and

Servers (kernel

services running

in user space)
Applications

Microkernel with essential

services like memory

management, process

management, timer system, etc...

Fig. 10.3 The Microkernel model

LO 2 Classify the
types of operating
systems

 Real-Time Opera ng System (RTOS) based Embedded System Design 393

rules concerning time-critical allocation of a system’s resources. The RTOS decides which applications should

run in which order and how much time needs to be allocated for each application. Predictable performance

is the hallmark of a well-designed RTOS. This is best achieved by the consistent application of policies and

rules. Policies guide the design of an RTOS. Rules implement those policies and resolve policy confl icts.

Windows Embedded Compact, QNX, VxWorks MicroC/OS-II etc are examples of Real Time Operating

Systems (RTOS).

10.2.2.1 The Real-Time Kernel
The kernel of a Real-Time Operating System is referred as Real. Time kernel. In complement to the

conventional OS kernel, the Real-Time kernel is highly specialised and it contains only the minimal set of

services required for running the user applications/tasks. The basic functions of a Real-Time kernel are listed

below:

Task/Process management ∑

Task/Process scheduling ∑

Task/Process synchronisation ∑

Error/Exception handling ∑

Memory management ∑

Interrupt handling ∑

Time management ∑

Task/ Process management Deals with setting up the memory space for the tasks, loading the task’s

code into the memory space, allocating system resources, setting up a Task Control Block (TCB) for the

task and task/process termination/deletion. A Task Control Block (TCB) is used for holding the information

corresponding to a task. TCB usually contains the following set of information.

Task ID: Task Identifi cation Number

Task State: The current state of the task (e.g. State = ‘Ready’ for a task which is ready to execute)

Task Type: Task type. Indicates what is the type for this task. The task can be a hard real time or soft real

time or background task.

Task Priority: Task priority (e.g. Task priority = 1 for task with priority = 1)

Task Context Pointer: Context pointer. Pointer for context saving

Task Memory Pointers: Pointers to the code memory, data memory and stack memory for the task

Task System Resource Pointers: Pointers to system resources (semaphores, mutex, etc.) used by the task

Task Pointers: Pointers to other TCBs (TCBs for preceding, next and waiting tasks)

Other Parameters: Other relevant task parameters

The parameters and implementation of the TCB is kernel dependent. The TCB parameters vary across

different kernels, based on the task management implementation. Task management service utilises the TCB

of a task in the following way

Creates a TCB for a task on creating a task ∑

Delete/remove the TCB of a task when the task is terminated or deleted ∑

Reads the TCB to get the state of a task ∑

Update the TCB with updated parameters on need basis (e.g. on a context switch) ∑

Modify the TCB to change the priority of the task dynamically ∑

Task/ Process Scheduling Deals with sharing the CPU among various tasks/processes. A kernel application

called ‘Scheduler’ handles the task scheduling. Scheduler is nothing but an algorithm implementation, which

394 Introduc on to Embedded Systems

performs the effi cient and optimal scheduling of tasks to provide a deterministic behaviour. We will discuss

the various types of scheduling in a later section of this chapter.

Task/ Process Synchronisa on Deals with synchronising the concurrent access of a resource, which is

shared across multiple tasks and the communication between various tasks. We will discuss the various

synchronisation techniques and inter task /process communication in a later section of this chapter.

Error/ Excep on Handling Deals with registering and handling the errors occurred/exceptions raised during

the execution of tasks. Insuffi cient memory, timeouts, deadlocks, deadline missing, bus error, divide by zero,

unknown instruction execution, etc. are examples of errors/exceptions. Errors/Exceptions can happen at the

kernel level services or at task level. Deadlock is an example for kernel level exception, whereas timeout is

an example for a task level exception. The OS kernel gives the information about the error in the form of a

system call (API). GetLastError() API provided by Windows CE/Embedded Compact RTOS is an example

for such a system call. Watchdog timer is a mechanism for handling the timeouts for tasks. Certain tasks may

involve the waiting of external events from devices. These tasks will wait infi nitely when the external device

is not responding and the task will generate a hang-up behaviour. In order to avoid these types of scenarios,

a proper timeout mechanism should be implemented. A watchdog is normally used in such situations. The

watchdog will be loaded with the maximum expected wait time for the event and if the event is not triggered

within this wait time, the same is informed to the task and the task is timed out. If the event happens before

the timeout, the watchdog is resetted.

 Memory Management Compared to the General Purpose Operating Systems, the memory management

function of an RTOS kernel is slightly different. In general, the memory allocation time increases

depending on the size of the block of memory needs to be allocated and the state of the allocated memory

block (initialised memory block consumes more allocation time than un-initialised memory block). Since

predictable timing and deterministic behaviour are the primary focus of an RTOS, RTOS achieves this

by compromising the effectiveness of memory allocation. RTOS makes use of ‘block’ based memory

allocation technique, instead of the usual dynamic memory allocation techniques used by the GPOS.

RTOS kernel uses blocks of fi xed size of dynamic memory and the block is allocated for a task on a need

basis. The blocks are stored in a ‘Free Buffer Queue’. To achieve predictable timing and avoid the timing

overheads, most of the RTOS kernels allow tasks to access any of the memory blocks without any memory

protection. RTOS kernels assume that the whole design is proven correct and protection is unnecessary.

Some commercial RTOS kernels allow memory protection as optional and the kernel enters a fail-safe

mode when an illegal memory access occurs.

A few RTOS kernels implement Virtual Memory
* concept for memory allocation if the system supports

secondary memory storage (like HDD and FLASH memory). In the ‘block’ based memory allocation, a block

of fi xed memory is always allocated for tasks on need basis and it is taken as a unit. Hence, there will not

be any memory fragmentation issues. The memory allocation can be implemented as constant functions and

thereby it consumes fi xed amount of time for memory allocation. This leaves the deterministic behaviour of

the RTOS kernel untouched. The ‘block’ memory concept avoids the garbage collection overhead also. (We

will explore this technique under the MicroC/OS-II kernel in a latter chapter).The ‘block’ based memory

* Virtual Memory is an imaginary memory supported by certain operating systems. Virtual memory expands the address space available

to a task beyond the actual physical memory (RAM) supported by the system. Virtual memory is implemented with the help of a

Memory Management Unit (MMU) and ‘memory paging’. The program memory for a task can be viewed as different pages and the

page corresponding to a piece of code that needs to be executed is loaded into the main physical memory (RAM). When a memory page

is no longer required, it is moved out to secondary storage memory and another page which contains the code snippet to be executed is

loaded into the main memory. This memory movement technique is known as demand paging. The MMU handles the demand paging

and converts the virtual address of a location in a page to corresponding physical address in the RAM.

 Real-Time Opera ng System (RTOS) based Embedded System Design 395

allocation achieves deterministic behaviour with the trade-of limited choice of memory chunk size and

suboptimal memory usage.

 Interrupt Handling Deals with the handling of various types of interrupts. Interrupts provide Real-Time

behaviour to systems. Interrupts inform the processor that an external device or an associated task requires

immediate attention of the CPU. Interrupts can be either Synchronous or Asynchronous. Interrupts which

occurs in sync with the currently executing task is known as Synchronous interrupts. Usually the software

interrupts fall under the Synchronous Interrupt category. Divide by zero, memory segmentation error, etc. are

examples of synchronous interrupts. For synchronous interrupts, the interrupt handler runs in the same context

of the interrupting task. Asynchronous interrupts are interrupts, which occurs at any point of execution of any

task, and are not in sync with the currently executing task. The interrupts generated by external devices (by

asserting the interrupt line of the processor/controller to which the interrupt line of the device is connected)

connected to the processor/controller, timer overfl ow interrupts, serial data reception/ transmission interrupts,

etc. are examples for asynchronous interrupts. For asynchronous interrupts, the interrupt handler is usually

written as separate task (Depends on OS kernel implementation) and it runs in a different context. Hence,

a context switch happens while handling the asynchronous interrupts. Priority levels can be assigned to the

interrupts and each interrupts can be enabled or disabled individually. Most of the RTOS kernel implements

‘Nested Interrupts’ architecture. Interrupt nesting allows the pre-emption (interruption) of an Interrupt Service

Routine (ISR), servicing an interrupt, by a high priority interrupt.

 Time Management Accurate time management is essential for providing precise time reference for all

applications. The time reference to kernel is provided by a high-resolution Real-Time Clock (RTC) hardware

chip (hardware timer). The hardware timer is programmed to interrupt the processor/controller at a fi xed rate.

This timer interrupt is referred as ‘ Timer tick’. The ‘Timer tick’ is taken as the timing reference by the kernel.

The ‘Timer tick’ interval may vary depending on the hardware timer. Usually the ‘Timer tick’ varies in the

microseconds range. The time parameters for tasks are expressed as the multiples of the ‘Timer tick’.

The System time is updated based on the ‘Timer tick’. If the System time register is 32 bits wide and the

‘Timer tick’ interval is 1 microsecond, the System time register will reset in

232 * 10–6/ (24 * 60 * 60) = 49700 Days = ~ 0.0497 Days = 1.19 Hours

If the ‘Timer tick’ interval is 1 millisecond, the system time register will reset in

232 * 10–3 / (24 * 60 * 60) = 497 Days = 49.7 Days = ~ 50 Days

The ‘Timer tick’ interrupt is handled by the ‘Timer Interrupt’ handler of kernel. The ‘Timer tick’ interrupt

can be utilised for implementing the following actions.

Save the current context (Context of the currently executing task). ∑

Increment the System time register by one. Generate timing error and reset the System time register if ∑

the timer tick count is greater than the maximum range available for System time register.

Update the timers implemented in kernel (Increment or decrement the timer registers for each timer ∑

depending on the count direction setting for each register. Increment registers with count direction

setting = ‘count up’ and decrement registers with count direction setting = ‘count down’).

Activate the periodic tasks, which are in the idle state. ∑

Invoke the scheduler and schedule the tasks again based on the scheduling algorithm. ∑

Delete all the terminated tasks and their associated data structures (TCBs) ∑

Load the context for the fi rst task in the ready queue. Due to the re-scheduling, the ready task might be ∑

changed to a new one from the task, which was preempted by the ‘Timer Interrupt’ task.

Apart from these basic functions, some RTOS provide other functionalities also (Examples are fi le

management and network functions). Some RTOS kernel provides options for selecting the required kernel

396 Introduc on to Embedded Systems

functions at the time of building a kernel. The user can pick the required functions from the set of available

functions and compile the same to generate the kernel binary. Windows CE is a typical example for such an

RTOS. While building the target, the user can select the required components for the kernel.

10.2.2.2  Hard Real-Time
Real-Time Operating Systems that strictly adhere to the timing constraints for a task is referred as ‘Hard

Real-Time’ systems. A Hard Real-Time system must meet the deadlines for a task without any slippage.

Missing any deadline may produce catastrophic results for Hard Real-Time Systems, including permanent

data lose and irrecoverable damages to the system/users. Hard Real-Time systems emphasise the principle ‘A

late answer is a wrong answer’. A system can have several such tasks and the key to their correct operation

lies in scheduling them so that they meet their time constraints. Air bag control systems and Anti-lock Brake

Systems (ABS) of vehicles are typical examples for Hard Real-Time Systems. The Air bag control system

should be into action and deploy the air bags when the vehicle meets a severe accident. Ideally speaking, the

time for triggering the air bag deployment task, when an accident is sensed by the Air bag control system,

should be zero and the air bags should be deployed exactly within the time frame, which is predefi ned for

the air bag deployment task. Any delay in the deployment of the air bags makes the life of the passengers

under threat. When the air bag deployment task is triggered, the currently executing task must be pre-empted,

the air bag deployment task should be brought into execution, and the necessary I/O systems should be

made readily available for the air bag deployment task. To meet the strict deadline, the time between the

air bag deployment event triggering and start of the air bag deployment task execution should be minimum,

ideally zero. As a rule of thumb, Hard Real-Time Systems does not implement the virtual memory model for

handling the memory. This eliminates the delay in swapping in and out the code corresponding to the task

to and from the primary memory. In general, the presence of Human in the loop (HITL) for tasks introduces

unexpected delays in the task execution. Most of the Hard Real-Time Systems are automatic and does not

contain a ‘human in the loop’.

10.2.2.3  So Real-Time
Real-Time Operating System that does not guarantee meeting deadlines, but offer the best effort to meet the

deadline are referred as ‘Soft Real-Time’ systems. Missing deadlines for tasks are acceptable for a Soft Real-

time system if the frequency of deadline missing is within the compliance limit of the Quality of Service

(QoS). A Soft Real-Time system emphasises the principle ‘A late answer is an acceptable answer, but it could

have done bit faster’. Soft Real-Time systems most often have a ‘human in the loop (HITL)’. Automatic Teller

Machine (ATM) is a typical example for Soft-Real-Time System. If the ATM takes a few seconds more than

the ideal operation time, nothing fatal happens. An audio-video playback system is another example for Soft

Real-Time system. No potential damage arises if a sample comes late by fraction of a second, for playback.

10.3 TASKS, PROCESS AND THREADS

The term ‘ task’ refers to something that needs to be done. In our day-to-day life,

we are bound to the execution of a number of tasks. The task can be the one

assigned by our managers or the one assigned by our professors/teachers or the

one related to our personal or family needs. In addition, we will have an order of

priority and schedule/timeline for executing these tasks. In the operating system

context, a task is defi ned as the program in execution and the related information

maintained by the operating system for the program. Task is also known as ‘Job’ in the operating system

context. A program or part of it in execution is also called a ‘Process’. The terms ‘Task’, ‘Job’ and ‘Process’

refer to the same entity in the operating system context and most often they are used interchangeably.

LO 3 Discuss
tasks, processes
and threads in the
operating system
context

 Real-Time Opera ng System (RTOS) based Embedded System Design 397

10.3.1 Process

A ‘Process’ is a program, or part of it, in execution. Process is also known as an instance of a program in

execution. Multiple instances of the same program can execute simultaneously. A process requires various

system resources like CPU for executing the process, memory for storing the code corresponding to the process

and associated variables, I/O devices for information exchange, etc. A process is sequential in execution.

10.3.1.1 The Structure of a Process
The concept of ‘Process’ leads to concurrent execution (pseudo parallelism) of tasks and thereby the effi cient

utilisation of the CPU and other system resources. Concurrent execution is achieved through the sharing of

CPU among the processes. A process mimics a processor in properties and holds a set of registers, process

status, a Program Counter (PC) to point to the next executable instruction of the process, a stack for holding the

local variables associated with the process and the code corresponding to the process. This can be visualised

as shown in Fig. 10.4.

A process which inherits all the properties of the CPU can be considered as a virtual processor, awaiting

its turn to have its properties switched into the physical processor. When the process gets its turn, its registers

and the program counter register becomes mapped to the physical registers of the CPU. From a memory

perspective, the memory occupied by the process is segregated into three regions, namely, Stack memory,

Data memory and Code memory (Fig. 10.5).

Process

Stack
(Stack pointer)

Working registers

Status registers

Program counter (PC)

Code memory
corresponding to the

Process

Data memory grows

upwards

Stack memory grows

downwards

Code Memory

Data Memory

Stack Memory

 Fig. 10.4 Structure of a Process Fig. 10.5 Memory organisation of a Process

The ‘ Stack’ memory holds all temporary data such as variables local to the process. Data memory holds

all global data for the process. The code memory contains the program code (instructions) corresponding

to the process. On loading a process into the main memory, a specifi c area of memory is allocated for the

process. The stack memory usually starts (OS Kernel implementation dependent) at the highest memory

address from the memory area allocated for the process. Say for example, the memory map of the memory

area allocated for the process is 2048 to 2100, the stack memory starts at address 2100 and grows downwards

to accommodate the variables local to the process.

398 Introduc on to Embedded Systems

10.3.1.2  Process States and State Transi on
The creation of a process to its termination is not

a single step operation. The process traverses

through a series of states during its transition from

the newly created state to the terminated state. The

cycle through which a process changes its state from

‘newly created’ to ‘execution completed’ is known

as ‘ Process Life Cycle’. The various states through

which a process traverses through during a Process

Life Cycle indicates the current status of the process

with respect to time and also provides information on

what it is allowed to do next. Figure 10.6 represents

the various states associated with a process.

The state at which a process is being created is

referred as ‘Created State’. The Operating System

recognises a process in the ‘Created State’ but no

resources are allocated to the process. The state,

where a process is incepted into the memory and

awaiting the processor time for execution, is known

as ‘Ready State’. At this stage, the process is placed

in the ‘Ready list’ queue maintained by the OS.

The state where in the source code instructions

corresponding to the process is being executed is

called ‘Running State’. Running state is the state

at which the process execution happens. ‘Blocked

State/Wait State’ refers to a state where a running

process is temporarily suspended from execution

and does not have immediate access to resources. The blocked state might be invoked by various conditions

like: the process enters a wait state for an event to occur (e.g. Waiting for user inputs such as keyboard input)

or waiting for getting access to a shared resource (will be discussed at a later section of this chapter). A state

where the process completes its execution is known as ‘Completed State’. The transition of a process from

one state to another is known as ‘State transition’. When a process changes its state from Ready to running

or from running to blocked or terminated or from blocked to running, the CPU allocation for the process may

also change.

It should be noted that the state representation for a process/task mentioned here is a generic representation.

The states associated with a task may be known with a different name or there may be more or less number

of states than the one explained here under different OS kernel. For example, under VxWorks’ kernel, the

tasks may be in either one or a specifi c combination of the states READY, PEND, DELAY and SUSPEND.

The PEND state represents a state where the task/process is blocked on waiting for I/O or system resource.

The DELAY state represents a state in which the task/process is sleeping and the SUSPEND state represents

a state where a task/process is temporarily suspended from execution and not available for execution. Under

MicroC/OS-II kernel, the tasks may be in one of the states, DORMANT, READY, RUNNING, WAITING

or INTERRUPTED. The DORMANT state represents the ‘Created’ state and WAITING state represents the

state in which a process waits for shared resource or I/O access. We will discuss about the states and state

transition for tasks under VxWorks and uC/OS-II kernel in a later chapter.

Ready

Running

Completed

Blocked

S
ch

ed
u
led

 fo
r

E
x
ecu

tio
n

In
te

rr
u
p
te

d
 o

r

P
re

em
p
te

d

Waiting for I/O
Waiting for Shared Resource

I/O Completion

Shared Resource Acquired

Execution Completion

Incepted into memory

Created

Fig. 10.6 Process states and state transition representation

 Real-Time Opera ng System (RTOS) based Embedded System Design 399

10.3.1.3  Process Management
Process management deals with the creation of a process, setting up the memory space for the process, loading

the process’s code into the memory space, allocating system resources, setting up a Process Control Block

(PCB) for the process and process termination/deletion. For more details on Process Management, refer to the

section ‘Task/Process management’ given under the topic ‘The Real-Time Kernel’ of this chapter.

10.3.2 Threads

A thread is the primitive that can execute code. A

thread is a single sequential fl ow of control within

a process. ‘Thread’ is also known as lightweight

process. A process can have many threads of

execution. Different threads, which are part of a

process, share the same address space; meaning

they share the data memory, code memory and heap

memory area. Threads maintain their own thread

status (CPU register values), Program Counter (PC)

and stack. The memory model for a process and its

associated threads are given in Fig. 10.7.

10.3.2.1 The Concept of Mul threading
A process/task in embedded application may be a

complex or lengthy one and it may contain various

suboperations like getting input from I/O devices connected to the processor, performing some internal

calculations/operations, updating some I/O devices etc. If all the subfunctions of a task are executed in

sequence, the CPU utilisation may not be effi cient. For example, if the process is waiting for a user input,

the CPU enters the wait state for the event, and the process execution also enters a wait state. Instead of this

single sequential execution of the whole process, if the task/process is split into different threads carrying

out the different subfunctionalities of the process, the CPU can be effectively utilised and when the thread

corresponding to the I/O operation enters the wait state, another threads which do not require the I/O event

for their operation can be switched into execution. This leads to more speedy execution of the process and

the effi cient utilisation of the processor time and resources. The multithreaded architecture of a process can

be better visualised with the thread-process diagram shown in Fig. 10.8.

If the process is split into multiple threads, which executes a portion of the process, there will be a main

thread and rest of the threads will be created within the main thread. Use of multiple threads to execute a

process brings the following advantage.

Better memory utilisation. Multiple threads of the same process share the address space for data ∑

memory. This also reduces the complexity of inter thread communication since variables can be shared

across the threads.

Since the process is split into different threads, when one thread enters a wait state, the CPU can be ∑

utilised by other threads of the process that do not require the event, which the other thread is waiting,

for processing. This speeds up the execution of the process.

Effi cient CPU utilisation. The CPU is engaged all time. ∑

Data memory for process

Stack memory for Thread 2

Code memory for process

Stack memory for Thread 1

Stack Memory

for Process

Fig. 10.7 Memory organisation of a Process and its

associated Threads

400 Introduc on to Embedded Systems

Code memory

Data memory

Task/Process

Thread 1

void main (void)

{

//Create child

thread 1

CreateThread(NULL,

1000,(LPTHREAD_STA

RT_ROUTINE)

ChildThread1,NULL,

0, &dwThreadID);

//Create child

thread 2

CreateThread(NULL,

1000,(LPTHREAD_STA

RT_ROUTINE)

ChildThread2,NULL,

0, &dwThreadID);

}

Thread 2

int ChildThread 1

(void)

{

//Do something

}

Thread 3

int ChildThread2

(void)

{

//Do something

}

Stack

Registers

Stack

Registers

Stack

Registers

Fig. 10.8 Process with multi-threads

10.3.2.2  Thread Standards
Thread standards deal with the different standards available for thread creation and management. These

standards are utilised by the operating systems for thread creation and thread management. It is a set of thread

class libraries. The commonly available thread class libraries are explained below.

 POSIX Threads POSIX stands for Portable Operating System Interface. The POSIX.4 standard deals with

the Real-Time extensions and POSIX.4a standard deals with thread extensions. The POSIX standard library

for thread creation and management is ‘ Pthreads’. ‘Pthreads’ library defi nes the set of POSIX thread creation

and management functions in ‘C’ language.

The primitive

int pthread_create(pthread_t *new_thread_ID, const pthread_attr_t

*attribute, void * (*start_function)(void *), void *arguments);

creates a new thread for running the function start_ function. Here pthread_t is the handle to the newly

created thread and pthread_attr_t is the data type for holding the thread attributes. ‘start_function’ is the

 Real-Time Opera ng System (RTOS) based Embedded System Design 401

function the thread is going to execute and arguments is the arguments for ‘start_function’ (It is a void * in

the above example). On successful creation of a Pthread, pthread_create() associates the Thread Control

Block (TCB) corresponding to the newly created thread to the variable of type pthread_t (new_thread_ID in

our example).

The primitive

int pthread_join(pthread_t new_thread,void * *thread_status);

blocks the current thread and waits until the completion of the thread pointed by it (In this example new_

thread)

All the POSIX ‘thread calls’ returns an integer. A return value of zero indicates the success of the call. It

is always good to check the return value of each call.

Example 1

Write a multithreaded application to print “Hello I’m in main thread” from the main thread and “Hello I’m in

new thread” 5 times each, using the pthread_create() and pthread_join() POSIX primitives.

//Assumes the application is running on an OS where POSIX library is

//available

#include <pthread.h>

#include <stdlib.h>

#include <stdio.h>

//**

//New thread function for printing “Hello I’m in new thread”

void *new_thread(void *thread_args)

{

 int i, j;

 for(j= 0; j < 5; j++)

 {

 printf(“Hello I’m in new thread\n”);

 //Wait for some time. Do nothing

 //The following line of code can be replaced with

 //OS supported delay function like sleep(), delay () etc…

 for(i= 0; i < 10000; i++);

 }

 return NULL;

}

//**

//Start of main thread

int main(void)

{

 int i, j;

 pthread_t tcb;

//Create the new thread for executing new_thread function

 if (pthread_create(&tcb, NULL, new_thread, NULL))

 {

 //New thread creation failed

 printf(“Error in creating new thread\n”);

402 Introduc on to Embedded Systems

 return -1;

 }

 for(j= 0; j < 5; j++)

 {

 printf(“Hello I’m in main thread\n”);

 //Wait for some time. Do nothing

 //The following line of code can be replaced with

 //OS supported delay function like sleep(), delay etc…

 for(i= 0; i < 10000; i++);

 }

 if (pthread_join(tcb, NULL))

 {

 //Thread join failed

 printf(“Error in Thread join\n”);

 return -1;

 }

 return 1;

}

You can compile this application using the gcc compiler. Examine the output to fi gure out the thread

execution switching. The lines printed will give an idea of the order in which the thread execution is switched

between. The pthread_join call forces the main thread to wait until the completion of the thread tcb, if the

main thread fi nishes the execution fi rst.

The termination of a thread can happen in different ways. The thread can terminate either by completing

its execution (natural termination) or by a forced termination. In a natural termination, the thread completes

its execution and returns back to the main thread through a simple return or by executing the pthread_exit()

call. Forced termination can be achieved by the call pthread_cancel() or through the termination of the main

thread with exit or exec functions. pthread_cancel() call is used by a thread to terminate another thread.

pthread_exit() call is used by a thread to explicitly exit after it completes its work and is no longer required

to exist. If the main thread fi nishes before the threads it has created, and exits with pthread_exit(), the other

threads continue to execute. If the main thread uses exit call to exit the thread, all threads created by the main

thread is terminated forcefully. Exiting a thread with the call pthread_exit() will not perform a cleanup. It

will not close any fi les opened by the thread and fi les will remain in the open status even after the thread

terminates. Calling pthread_join at the end of the main thread is the best way to achieve synchronisation and

proper cleanup. The main thread, after fi nishing its task waits for the completion of other threads, which were

joined to it using the pthread_join call. With a pthread_join call, the main thread waits other threads, which

were joined to it, and fi nally merges to the single main thread. If a new thread spawned by the main thread

is still not joined to the main thread, it will be counted against the system’s maximum thread limit. Improper

cleanup will lead to the failure of new thread creation.

 Win32 Threads Win32 threads are the threads supported by various fl avours of Windows Operating

Systems. The Win32 Application Programming Interface (Win32 API) libraries provide the standard set of

Win32 thread creation and management functions. Win32 threads are created with the API

HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,DWORD

dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParameter,

DWORD dwCreationFlags, LPDWORD lpThreadId);

 Real-Time Opera ng System (RTOS) based Embedded System Design 403

The parameter lpThreadAttributes defi nes the security attributes for the thread and dwStackSize defi nes the

stack size for the thread. These two parameters are not supported by the Windows CE/Embedded Compact

Real-Time Operating Systems and it should be kept as NULL and 0 respectively in a CreateThread API Call.

The other parameters are

lpStartAddress: Pointer to the function which is to be executed by the thread.

lpParameter: Parameter specifying an application-defi ned value that is passed to the thread routine.

dwCreationFlags: Defi nes the state of the thread when it is created. Usually it is kept as 0 or CREATE_

SUSPENDED implying the thread is created and kept at the suspended state.

lpThreadId: Pointer to a DWORD that receives the identifi er for the thread.

On successful creation of the thread, CreateThread returns the handle to the thread and the thread

identifi er.

The API GetCurrentThread(void) returns the handle of the current thread and GetCurrentThreadId(void)

returns its ID. GetThreadPriority (HANDLE hThread) API returns an integer value representing the current

priority of the thread whose handle is passed as hThread. Threads are always created with normal priority

(THREAD_PRIORITY_NORMAL. Refer MSDN documentation for the different thread priorities and their

meaning). SetThreadPriority (HANDLE hThread, int nPriority) API is used for setting the priority of a thread.

The fi rst parameter to this function represents the thread handle and the second one the thread priority.

For Win32 threads, the normal thread termination happens when an exception occurs in the thread, or when

the thread’s execution is completed or when the primary thread or the process to which the thread is associated

is terminated. A thread can exit itself by calling the ExitThread (DWORD dwExitCode) API. The parameter

dwExitCode sets the exit code for thread termination. Calling ExitThread API frees all the resources utilised

by the thread. The exit code of a thread can be checked by other threads by calling the GetExitCodeThread

(HANDLE hThread, LPDWORD lpExitCode). TerminateThread (HANDLE hThread, DWORD dwExitCode)

API is used for terminating a thread from another thread. The handle hThread indicates which thread is

to be terminated and dwExitCode sets the exit code for the thread. This API will not execute the thread

termination and clean up code and may not free the resources occupied by the thread. TerminateThread is a

potentially dangerous call and it should not be used in normal conditions as a mechanism for terminating a

thread. Use this call only as a fi nal choice. When a thread is terminated through TerminateThread method, the

system releases the thread’s initial stack and the thread will not get a chance to execute any user-mode code.

Also any dynamic link libraries (dlls) attached to the thread are not notifi ed that the thread is terminating.

TerminateThread can lead to potential issues like: Non-releasing of the critical section object, any, owned

by the thread, non-releasing of heap lock, if the thread is allocating memory from the heap, inconsistencies

of the kernel32 state for the thread’s process if the thread was executing certain kernel32 call when it is

terminated, issues in shared dll functions, if the thread was manipulating the global state of a shared dll

when it is terminated etc. SuspendThread(HANDLE hThread) API can be used for suspending a thread

from execution provided the handle hThread possesses THREAD_SUSPEND_RESUME access right. If the

SuspendThread API call succeeds, the thread stops executing and increments its internal suspend count. The

thread becomes suspended if its suspend count is greater than zero. The SuspendThread function is primarily

designed for use by debuggers. One must be cautious in using this API for the reason it may cause deadlock

condition if the thread is suspended at a stage where it acquired a mutex or shared resource and another

thread tries to access the same. The ResumeThread(HANDLE hThread) API is used for resuming a suspended

thread. The ResumeThread API checks the suspend count of the specifi ed thread. A suspend count of zero

indicates that the specifi ed thread is not currently in the suspended mode. If the count is not zero, the count is

decremented by one and if the resulting count value is zero, the thread is resumed. The API Sleep (DWORD

404 Introduc on to Embedded Systems

dwMilliseconds) can be used for suspending a thread for the duration specifi ed in milliseconds by the Sleep

function. The Sleep call is initiated by the thread.

Example 2

Write a multithreaded application using Win32 APIs to set up a counter in the main thread and secondary

thread to count from 0 to 10 and print the counts from both the threads. Put a delay of 500 ms in between the

successive printing in both the threads.

#include “stdafx.h”

#include “windows.h”

#include “stdio.h”

//**

//Child thread

//**

void ChildThread(void)

{

 char i;

 for (i = 0; i <= 10; ++i)

 {

 printf(“Executing Child Thread : Counter = %d\n”, i);

 Sleep(500);

 }

}

//**

//Primary thread

//**

int main(int argc, char* argv[])

{

 HANDLE hThread;

 DWORD dwThreadID;

 char i;

 hThread = CreateThread(NULL, 1000, (LPTHREAD_START_ROUTINE)ChildThread,

 NULL, 0, &dwThreadID);

 if (hThread == NULL)

 {

 printf(“Thread Creation Failed\nError No : %d\n”, GetLastError());

 return 1;

 }

 for (i = 0; i <= 10; ++i)

 {

 printf(“Executing Main Thread : Counter = %d\n”, i);

 Sleep(500);

 }

 return 0;

}

 Real-Time Opera ng System (RTOS) based Embedded System Design 405

To execute this program, create a new Win32 Console Application with Microsoft Visual Studio using

Visual C++ and add the above piece of code to it and compile. The output obtained on running this application

on a machine with Windows 10 operating system is given in Fig. 10.9.

Fig. 10.9 Output of the Win32 Multithreaded application

If you examine the output, you can see the switching between main and child threads. The output need not

be the same always. The output is purely dependent on the scheduling policies implemented by the windows

operating system for thread scheduling. You may get the same output or a different output each time you run

the application.

 Java Threads Java threads are the threads supported by Java programming Language. The java thread

class ‘Thread’ is defi ned in the package ‘java.lang’. This package needs to be imported for using the thread

creation functions supported by the Java thread class. There are two ways of creating threads in Java: Either

by extending the base ‘Thread’ class or by implementing an interface. Extending the thread class allows

inheriting the methods and variables of the parent class (Thread class) only whereas interface allows a way

to achieve the requirements for a set of classes. The following piece of code illustrates the implementation of

Java threads with extending the thread base class ‘Thread’.

import java.lang.*;

public class MyThread extends Thread

{

 public void run()

 {

 System.out.println(“Hello from MyThread!”);

 }

 public static void main(String args[])

 {

 (new MyThread()).start();

 }

}

406 Introduc on to Embedded Systems

The above piece of code creates a new class MyThread by extending the base class Thread. It also

overrides the run() method inherited from the base class with its own run() method. The run() method of

MyThread implements all the task for the MyThread thread. The method start() moves the thread to a pool

of threads waiting for their turn to be picked up for execution by the scheduler. The thread is said to be in the

‘Ready’ state at this stage. The scheduler picks the threads for execution from the pool based on the thread

priorities.

E.g. MyThread.start();

The output of the above piece of code when executed on Windows 10 platform is given in Fig. 10.10.

Fig. 10.10 Output of the Java Multithreaded application

Invoking the static method yield() voluntarily give up the execution of the thread and the thread is moved

to the pool of threads waiting to get their turn for execution, i.e. the thread enters the ‘Ready’ state.

E.g. MyThread.yield();

The static method sleep() forces the thread to sleep for the duration mentioned by the sleep call, i.e. the

thread enters the ‘Suspend’ mode. Once the sleep period is expired, the thread is moved to the pool of threads

waiting to get their turn for execution, i.e. the thread enters the ‘Ready’ state. The method sleep() only

guarantees that the thread will sleep for the minimum period mentioned by the argument to the call. It will not

guarantee anything on the resume of the thread after the sleep period. It is dependent on the scheduler.

E.g. MyThread.sleep(100); Sleep for 100 milliseconds.

Calling a thread Object’s wait() method causes the thread object to wait. The thread will remain in the

‘Wait’ state until another thread invokes the notify() or notifyAll() method of the thread object which is

waiting. The thread enters the ‘Blocked’ state when waiting for input from I/O devices or waiting for object

lock in case of accessing shared resources. The thread is moved to the ‘Ready’ state on receiving the I/O

input or on acquiring the object lock. The thread enters the ‘Finished/Dead’ state on completion of the task

assigned to it or when the stop() method is explicitly invoked. The thread may also enter this state if it is

terminated by an unrecoverable error condition.

For more information on Java threads, visit Sun Micro System’s tutorial on Threads, available at http://

java.sun.com/tutorial/applet/overview/threads.html

Summary So far we discussed about the various thread classes available for creation and management of

threads in a multithreaded system in a General Purpose Operating System’s perspective. From an RTOS

perspective, POSIX threads and Win32 threads are the most commonly used thread class libraries for thread

creation and management. Many non-standard, proprietary thread classes are also used by some proprietary

RTOS. Portable threads (Pth), a very portable POSIX/ANSI-C based library from GNU, may be the “next

generation” threads library. Pth provides non-preemptive priority based scheduling for multiple threads inside

event driven applications. Visit http://www.gnu.org/software/pth/ for more details on GNU Portable threads.

 Real-Time Opera ng System (RTOS) based Embedded System Design 407

10.3.2.3  Thread Pre-emp on
Thread pre-emption is the act of pre-empting the currently running thread (stopping the currently running thread

temporarily). Thread pre-emption ability is solely dependent on the Operating System. Thread pre-emption

is performed for sharing the CPU time among all the threads. The execution switching among threads are

known as ‘Thread context switching’. Thread context switching is dependent on the Operating system’s

scheduler and the type of the thread. When we say ‘Thread’, it falls into any one of the following types.

 User Level Thread User level threads do not have kernel/Operating System support and they exist solely in

the running process. Even if a process contains multiple user level threads, the OS treats it as single thread

and will not switch the execution among the different threads of it. It is the responsibility of the process to

schedule each thread as and when required. In summary, user level threads of a process are non-preemptive

at thread level from OS perspective.

 Kernel/System Level Thread Kernel level threads are individual units of execution, which the OS treats

as separate threads. The OS interrupts the execution of the currently running kernel thread and switches the

execution to another kernel thread based on the scheduling policies implemented by the OS. In summary

kernel level threads are pre-emptive.

For user level threads, the execution switching (thread context switching) happens only when the currently

executing user level thread is voluntarily blocked. Hence, no OS intervention and system calls are involved

in the context switching of user level threads. This makes context switching of user level threads very fast.

On the other hand, kernel level threads involve lots of kernel overhead and involve system calls for context

switching. However, kernel threads maintain a clear layer of abstraction and allow threads to use system calls

independently. There are many ways for binding user level threads with system/kernel level threads. The

following section gives an overview of various thread binding models.

 Many-to-One Model Here many user level threads are mapped to a single kernel thread. In this model,

the kernel treats all user level threads as single thread and the execution switching among the user level

threads happens when a currently executing user level thread voluntarily blocks itself or relinquishes the

CPU. Solaris Green threads and GNU Portable Threads are examples for this. The ‘PThread’ example given

under the POSIX thread library section is an illustrative example for application with Many-to-One thread

model.

 One-to-One Model In One-to-One model, each user level thread is bonded to a kernel/system level thread.

Windows NT and Linux threads are examples for One-to-One thread models. The modifi ed ‘PThread’

example given under the ‘Thread Pre-emption’ section is an illustrative example for application with One-

to-One thread model.

 Many-to-Many Model In this model many user level threads are allowed to be mapped to many kernel

threads. Windows NT/2000 with ThreadFibre package is an example for this.

10.3.2.4 Thread v/s Process
I hope, by now you got a reasonably good knowledge of process and threads. Now let us summarise the

properties of process and threads.

Thread Process

Thread is a single unit of execution and is part of process. Process is a program in execution and contains one or

more threads.

A thread does not have its own data memory and heap

memory. It shares the data memory and heap memory with

other threads of the same process.

Process has its own code memory, data memory and stack

memory.

408 Introduc on to Embedded Systems

A thread cannot live independently; it lives within the

process.

A process contains at least one thread.

There can be multiple threads in a process. The fi rst thread

(main thread) calls the main function and occupies the start

of the stack memory of the process.

Threads within a process share the code, data and heap

memory. Each thread holds separate memory area for stack

(shares the total stack memory of the process).

Threads are very inexpensive to create Processes are very expensive to create. Involves many OS

overhead.

Context switching is inexpensive and fast Context switching is complex and involves lot of OS over-

head and is comparatively slower.

If a thread expires, its stack is reclaimed by the process. If a process dies, the resources allocated to it are reclaimed

by the OS and all the associated threads of the process

also dies.

10.4 MULTIPROCESSING AND MULTITASKING

The terms multiprocessing and multitasking are a little confusing and sounds alike.

In the operating system context multiprocessing describes the ability to execute

multiple processes simultaneously. Systems which are capable of performing

multiprocessing, are known as multiprocessor systems. Multiprocessor systems

possess multiple CPUs and can execute multiple processes simultaneously.

The ability of the operating system to have multiple programs in memory,

which are ready for execution, is referred as multiprogramming. In a uniprocessor system, it is not possible

to execute multiple processes simultaneously. However, it is possible for a uniprocessor system to achieve

some degree of pseudo parallelism in the execution of multiple processes by switching the execution among

different processes. The ability of an operating system to hold multiple processes in memory and switch

the processor (CPU) from executing one process to another process is known as multitasking. Multitasking

creates the illusion of multiple tasks executing in parallel. Multitasking involves the switching of CPU from

executing one task to another. In an earlier section ‘The Structure of a Process’ of this chapter, we learned

that a Process is identical to the physical processor in the sense it has own register set which mirrors the

CPU registers, stack and Program Counter (PC). Hence, a ‘process’ is considered as a ‘Virtual processor’,

awaiting its turn to have its properties switched into the physical processor. In a multitasking environment,

when task/process switching happens, the virtual processor (task/process) gets its properties converted into

that of the physical processor. The switching of the virtual processor to physical processor is controlled by the

scheduler of the OS kernel. Whenever a CPU switching happens, the current context of execution should be

saved to retrieve it at a later point of time when the CPU executes the process, which is interrupted currently

due to execution switching. The context saving and retrieval is essential for resuming a process exactly from

the point where it was interrupted due to CPU switching. The act of switching CPU among the processes or

changing the current execution context is known as ‘Context switching’. The act of saving the current context

which contains the context details (Register details, memory details, system resource usage details, execution

details, etc.) for the currently running process at the time of CPU switching is known as ‘ Context saving’.

The process of retrieving the saved context details for a process, which is going to be executed due to CPU

switching, is known as ‘ Context retrieval’. Multitasking involves ‘ Context switching’ (Fig. 10.11), ‘Context

saving’ and ‘Context retrieval’.

Toss Juggling The skilful object manipulation game is a classic real world example for the multitasking

illusion. The juggler uses a number of objects (balls, rings, etc.) and throws them up and catches them. At

LO 4 Understand
the difference
between
multiprocessing
and multitasking

 Real-Time Opera ng System (RTOS) based Embedded System Design 409

any point of time, he throws only one ball and catches only one per hand. However, the speed at which he is

switching the balls for throwing and catching creates the illusion, he is throwing and catching multiple balls

or using more than two hands ☺ simultaneously, to the spectators.

Time

P
ro

ce
ss

es

Idle

Running

Process 1

Process 2

E
x

ec
u

ti
o

n
 s

w
it

ch
es

 t
o

 P
r
o

c
e
s
s
 2

(I
n

te
rr

u
p

t
o

r
S

y
st

em
 C

al
l)

1
.
S

av
e

C
u

rr
en

t
co

n
te

x
t

in
to

 P
C

B
0

2
.

P
er

fo
rm

 o
th

er
 O

S
 o

p
er

at
io

n
s

re
la

te
d

 t
o

‘C
o

n
te

x
t

S
w

it
ch

in
g

’
3

.
R

el
o

ad
 C

o
n

te
x

t
fo

r
P

ro
ce

ss
 2

 f
ro

m
 P

C
B

1

E
x

ec
u

ti
o

n
 s

w
it

ch
es

 t
o

 P
r
o

c
e
s
s
 1

(I
n

te
rr

u
p

t
o

r
S

y
st

em
 C

al
l)

1
.
S

av
e

C
u

rr
en

t
co

n
te

x
t

in
to

 P
C

B
1

2
.

P
er

fo
rm

 o
th

er
 O

S
 o

p
er

at
io

n
s

re
la

te
d

 t
o

‘C
o

n
te

x
t

S
w

it
ch

in
g

’
3

.
R

el
o

ad
 C

o
n

te
x

t
fo

r
P

ro
ce

ss
 1

 f
ro

m
 P

C
B

0

Delay in execution of

Process 2 happened

due to ‘Context

Switching’

Delay in execution of

Process 1 happened

due to ‘Context

Switching’

RunningIdleWaits in ‘Ready’ QueueRunning

RunningIdle Waits in ‘Ready’ Queue

Fig. 10.11 Context switching

10.4.1 Types of Multitasking

As we discussed earlier, multitasking involves the switching of execution among multiple tasks. Depending

on how the switching act is implemented, multitasking can be classifi ed into different types. The following

section describes the various types of multitasking existing in the Operating System’s context.

10.4.1.1  Co-opera ve Mul tasking
Co-operative multitasking is the most primitive form of multitasking in which a task/process gets a chance to

execute only when the currently executing task/process voluntarily relinquishes the CPU. In this method, any

task/process can hold the CPU as much time as it wants. Since this type of implementation involves the mercy

of the tasks each other for getting the CPU time for execution, it is known as co-operative multitasking. If the

currently executing task is non-cooperative, the other tasks may have to wait for a long time to get the CPU.

10.4.1.2 Preemp ve Mul tasking
 Preemptive multitasking ensures that every task/process gets a chance to execute. When and how much time

a process gets is dependent on the implementation of the preemptive scheduling. As the name indicates, in

preemptive multitasking, the currently running task/process is preempted to give a chance to other tasks/

process to execute. The preemption of task may be based on time slots or task/process priority.

10.4.1.3  Non-preemp ve Mul tasking
In non-preemptive multitasking, the process/task, which is currently given the CPU time, is allowed to

execute until it terminates (enters the ‘Completed’ state) or enters the ‘Blocked/Wait’ state, waiting for an I/O

410 Introduc on to Embedded Systems

or system resource. The co-operative and non-preemptive multitasking differs in their behaviour when they

are in the ‘Blocked/Wait’ state. In co-operative multitasking, the currently executing process/task need not

relinquish the CPU when it enters the ‘Blocked/Wait’ state, waiting for an I/O, or a shared resource access or

an event to occur whereas in non-preemptive multitasking the currently executing task relinquishes the CPU

when it waits for an I/O or system resource or an event to occur.

10.5 TASK SCHEDULING

As we already discussed, multitasking involves the execution switching among

the different tasks. There should be some mechanism in place to share the CPU

among the different tasks and to decide which process/task is to be executed at a

given point of time. Determining which task/process is to be executed at a given

point of time is known as task/process scheduling. Task scheduling forms the

basis of multitasking. Scheduling policies forms the guidelines for determining

which task is to be executed when. The scheduling policies are implemented in an

algorithm and it is run by the kernel as a service. The kernel service/application,

which implements the scheduling algorithm, is known as ‘Scheduler’. The process scheduling decision may

take place when a process switches its state to

 1. ‘Ready’ state from ‘Running’ state

 2. ‘Blocked/Wait’ state from ‘Running’ state

 3. ‘Ready’ state from ‘Blocked/Wait’ state

 4. ‘Completed’ state

A process switches to ‘Ready’ state from the ‘Running’ state when it is preempted. Hence, the type of

scheduling in scenario 1 is pre-emptive. When a high priority process in the ‘Blocked/Wait’ state completes

its I/O and switches to the ‘Ready’ state, the scheduler picks it for execution if the scheduling policy used is

priority based preemptive. This is indicated by scenario 3. In preemptive/non-preemptive multitasking, the

process relinquishes the CPU when it enters the ‘Blocked/Wait’ state or the ‘Completed’ state and switching

of the CPU happens at this stage. Scheduling under scenario 2 can be either preemptive or non-preemptive.

Scheduling under scenario 4 can be preemptive, non-preemptive or co-operative.

The selection of a scheduling criterion/algorithm should consider the following factors:

 CPU Utilisation: The scheduling algorithm should always make the CPU utilisation high. CPU utilisation is

a direct measure of how much percentage of the CPU is being utilised.

 Throughput: This gives an indication of the number of processes executed per unit of time. The throughput

for a good scheduler should always be higher.

 Turnaround Time: It is the amount of time taken by a process for completing its execution. It includes the

time spent by the process for waiting for the main memory, time spent in the ready queue, time spent on

completing the I/O operations, and the time spent in execution. The turnaround time should be a minimal for

a good scheduling algorithm.

 Waiting Time: It is the amount of time spent by a process in the ‘Ready’ queue waiting to get the CPU time

for execution. The waiting time should be minimal for a good scheduling algorithm.

 Response Time: It is the time elapsed between the submission of a process and the fi rst response. For a good

scheduling algorithm, the response time should be as least as possible.

To summarise, a good scheduling algorithm has high CPU utilisation, minimum Turn Around Time

(TAT), maximum throughput and least response time.

LO 5 Describe
the FCFS/FIFO,
LCFS/LIFO, SJF
and priority based
task/process
scheduling

