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COURSE OBJECTIVES: 

1. To introduce the concepts of Edge Computing. 

2. To understand the IoT Architecture, Implementation of Edge Computing with help of IoT 

Architecture with Core Modules. 

3. To understand the RasberryPi Hardware Layouts and Operating systems and Configuration of 

Rasberry Pi. 

4. To understand the Implementation of Interface of RasberryPi with Micro Computer and Edge 

to Cloud Protocols and MQTT State transitions. 

5. To familiarize with the concepts of Edge Computing with RasberryPi and Industrial and 

Commercial IoT. 

 

COURSE OUTCOMES: 

After completion of this course, the students will be able to 

CO1: To illustrate the .Edge Computing use cases and outline Edge computing hardware 

architecture. [K2] 

CO2: Make use of IoT architecture and implementation use cases. [K3] 

CO3: Analyzing the layout and interface, configure of Rasberry Pi. [K4] 

CO4: List out the relationships of edge computing with Rasberry Pi, with cloud protocols, 

industrial and commercial IoT and Edge Computing. [K4] 

 

SYLLABUS: 

UNIT- I: IoT AND EDGE COMPUTING DEFINITION AND USE CASES 

Introduction to Edge Computing Scenario’s and Use cases- Edge computing purpose and definition, 

Edge computing use cases, Edge computing hardware architectures, Edge platforms, Edge vs Fog 

Computing, Communication Modles-Edge, Fog and M2M. 

 

UNIT- II: IoT ARCHITECTURE AND CORE IoT MODULES 

A Connected ecosystem, IoT versus machine-to-machine versus, SCADA, The value of Network 

and Metcalfe’s and Beckstroms’s laws, IoT and Edge Architecture, Role of an architect, 

Understanding Implementations with examples-Example use case and deployment, Case study-

Telemedicine palliative care, Requirements, Implementation, Use case retrospective. 

 

UNIT- III: RASBERRYPi  

RasberryPi: Introduction to RasberryPi, About RasberryPi Board, Hardware Layout and Pin outs, 

Operating systems on RasberryPi, Configuring RasberryPi, Programming RasberryPi, Connecting 

RasberryPi via SSH, Remote access tools, Interfacing DHT Sensor with Pi, Pi as Webserver, Pi 

Camera, Image & Video Processing using Pi. 
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UNIT- IV: INTERFACING RASBERRYPi & MQTT 

Implementation of Microcomputer RasberryPi and device Interfacing, Edge to Cloud Protocols-

Protocols, MQTT, MQTT publish-subscribe, MQTT Architecture details, MQTT state transitions, 

MQTT packet structure, MQTT data types, MQTT communication formats, MQTT 3.1.1 working 

example. 

 

UNIT- V: EDGE COMPUTING WITH RASBERRYPi 

Edge Computing with RasberryPi, Industrial and Commercial IoT and Edge, Edge Computing 

and solutions. 

 

TEXT BOOKS: 

1. IoT Edge Computing for Architects –Second Edition, by Perry Lea, Publisher: Packet 

Publishing, 2020, ISBN: 9781839214806. 

2. Raspberry Pi Cookbook, 3rd Edition, by Simon Monk, Publisher: O’Reilly Media, Inc 

2019,ISBN: 978149204322. 

 

REFERENCE BOOKS: 

1. Fog and Edge Computing: Principles and Paradigms by Rajkumar Buyya, Satish Narayana 

Srirama, Wiley Publication, 2019, ISBN: 9781119524984. 

2. David Jensen, “Beginning Azure IoT Edge Computing: Extending the Cloud to the Intelligent. 

Edge, Microsoft Azure 

 

 



UNIT-1: Introduction of IoT and Edge Computing:-  

Edge Computing Scenario's and Use cases, Edge 

computing purpose and definition, Edge computing 

hardware architectures, Edge platforms, Edge vs. Fog 

Computing, Communication Models - Edge, Fog and 

M2M. 

WHAT IS COMPUTING AND TYPES? 

Computing refers to the use of computers and computational systems to 

process, store, and manage data, perform calculations, and solve 

problems. It encompasses a wide range of activities involving hardware, 

software, algorithms, and data. 

There are several types of computing that can be categorized based on 

their characteristics and functionalities. Here are some common types of 

computing: 

1. Cloud Computing: Cloud computing refers to the delivery of computing 

resources, including processing power, storage, and software applications, 

over the internet. Users can access and utilize these resources on-demand 

from remote data centers. Cloud computing offers scalability, flexibility, 

and cost-efficiency by allowing users to pay for resources they consume. 

2. Edge Computing: Edge computing, as discussed earlier, involves 

processing and analyzing data near the source of its generation, at the 

edge of the network. It reduces latency, improves response times, and 

enables real-time or near-real-time decision-making. Edge computing is 

particularly useful in applications that require immediate processing or 

operate in environments with limited connectivity. 

3. High-Performance Computing (HPC): High-performance computing 

involves the use of powerful computing systems to solve complex 

problems or perform large-scale computations. HPC systems typically 

utilize parallel processing techniques, specialized hardware (such as GPUs 

or FPGAs), and optimized software algorithms to deliver exceptional 

computational performance. HPC is used in scientific research, 



simulations, weather forecasting, and other computationally intensive 

tasks. 

4. Distributed Computing: Distributed computing involves the use of 

multiple interconnected computers or nodes to work together as a unified 

system. The tasks are divided among the nodes, and they collaborate to 

solve complex problems or perform computations. Distributed computing 

enables scalability, fault-tolerance, and increased processing power by 

harnessing the resources of multiple machines. 

5. Quantum Computing: Quantum computing utilizes quantum mechanical 

principles to perform computations. It leverages quantum bits, or qubits, 

which can represent multiple states simultaneously, allowing for 

exponential processing power compared to classical computing. Quantum 

computing has the potential to solve complex problems, optimize 

algorithms, and advance fields like cryptography and molecular modeling. 

6. Mobile Computing: Mobile computing refers to the use of computing 

devices like smartphones, tablets, and wearables for data processing, 

communication, and access to applications and services on the go. Mobile 

computing leverages wireless networks, location awareness, and mobility 

features to enable portable and personalized computing experiences. 

7. Grid Computing: Grid computing involves the pooling of computing 

resources from multiple geographically distributed and independent 

sources to work on a common goal. It enables resource sharing, 

collaboration, and efficient utilization of computing power for large-scale 

computational tasks. 

These are just a few examples of computing types, each serving specific 

purposes and addressing unique requirements. As technology advances, 

new computing paradigms and types are continuously emerging, catering 

to evolving needs and expanding possibilities in the digital world. 

 

INTRODUCTION TO EDGE COMPUTING 

Edge computing is a paradigm shift in computing that brings data 

processing and storage closer to the source of data generation, at the 

edge of a network. Traditionally, data generated by devices was sent to 

centralized data centers or the cloud for processing and analysis. However, 

with the rise of Internet of Things (IoT) devices, autonomous systems, and 



real-time applications, there is a growing need for faster response times, 

reduced latency, improved privacy, and more efficient network utilization. 

This is where edge computing comes into play. 

In edge computing, computing resources such as servers, gateways, or 

edge devices are deployed closer to the edge devices or sensors, where 

data is generated. These edge nodes have the capability to perform 

localized data processing, analytics, and storage, reducing the need to 

transmit large amounts of data to remote data centers or the cloud. By 

processing data at the edge, latency is minimized, and real-time or near-

real-time decision-making becomes possible. 

The key advantages of edge computing include: 

1. Reduced Latency: By processing data locally at the edge, response times 

are significantly improved. Applications that require real-time interactions, 

such as autonomous vehicles or industrial automation, can benefit from 

immediate data processing without relying on distant servers. 

2. Bandwidth Optimization: Edge computing minimizes the need for data 

transfer over the network. Only relevant or summarized data is transmitted 

to the cloud, reducing bandwidth requirements and associated costs. 

3. Improved Reliability: Edge computing enables local data processing, 

which means applications can continue to function even in cases of 

network disruption or intermittent connectivity to the cloud. It enhances 

system resilience and availability. 

4. Enhanced Privacy and Security: Edge computing allows for data to be 

processed and analyzed locally, reducing the exposure of sensitive 

information to the cloud or external networks. This can be crucial in 

industries like healthcare or finance, where data privacy is of utmost 

importance. 

5. Scalability: Edge computing can scale horizontally by deploying additional 

edge devices or servers as needed. It enables distributed computing 

capabilities, accommodating varying workloads and increasing 

computational capacity at the edge. 

Edge computing finds applications in a wide range of industries and 

scenarios. It is particularly relevant in IoT deployments, smart cities, 



industrial automation, healthcare, autonomous vehicles, retail, and 

telecommunications, among others. 

As technology continues to advance, edge computing is expected to play 

a pivotal role in enabling the growth of emerging technologies like 5G, AI, 

and the proliferation of connected devices. It complements and enhances 

cloud computing, providing a decentralized and distributed computing 

architecture that meets the demands of today's data-intensive and 

latency-sensitive applications. 

 

EDGE COMPUTING PURPOSE & DEFINITION 

Edge computing refers to the practice of processing, analyzing, and 

storing data near its source, at the edge of a network, rather than sending 

it to a centralized data center or cloud. The purpose of edge computing is 

to enable real-time data processing and reduce the latency, bandwidth, 

and privacy concerns associated with transmitting data to a remote 

location for analysis. 

In traditional computing models, data generated by devices at the 

network edge, such as sensors, cameras, or IoT devices, is sent to a central 

server or cloud infrastructure for processing. However, this approach can 

result in delays due to the time it takes to transmit the data over the 

network. Additionally, in scenarios where large amounts of data are 

generated, transmitting all of it to a remote server may be impractical or 

costly in terms of network bandwidth. 

Edge computing addresses these challenges by bringing computation and 

data storage closer to the edge devices themselves. By deploying 

computing resources, such as servers, gateways, or edge devices, in 

proximity to where the data is generated, processing and analysis can be 

performed locally. This enables faster response times, reduces the need 

for extensive data transfers, and can improve overall system efficiency. 

Edge computing is particularly useful in scenarios that require real-time or 

near-real-time processing, such as industrial automation, autonomous 

vehicles, remote monitoring, smart cities, and healthcare applications. It 

allows for quicker decision-making, faster response to critical events, and 



the ability to operate even in situations with limited or intermittent 

connectivity to the cloud. 

Overall, the purpose of edge computing is to distribute computing 

capabilities and data storage to the network edge, closer to where the 

data is generated, in order to improve performance, reduce latency, and 

address the unique requirements of applications that demand real-time 

processing and low-latency interactions. 

 

EDGE COMPUTING USE CASES 

 

Edge computing has a wide range of use cases across various industries. 

Here are some examples: 

1. Internet of Things (IoT): Edge computing is fundamental to IoT 

deployments as it allows for real-time data processing, reducing the need 

for constant data transfers to the cloud. It enables local analytics, decision-

making, and automation. Use cases include smart homes, smart cities, 

industrial IoT, agriculture, and asset tracking. 

2. Industrial Automation: Edge computing plays a crucial role in industrial 

settings where low latency and real-time decision-making are critical. It 

facilitates real-time monitoring and control of machines and processes, 

predictive maintenance, and optimization of manufacturing operations. 

3. Autonomous Vehicles: Edge computing is vital for autonomous vehicles 

as they generate massive amounts of data that require immediate 

processing for real-time decision-making. Edge computing enables on-

board analytics, object detection, image recognition, and vehicle-to-

vehicle communication. 

4. Retail: In retail environments, edge computing enables personalized 

shopping experiences, inventory management, and real-time analytics. It 

can power applications like smart shelves, in-store analytics, customer 

tracking, and dynamic pricing. 

5. Telecommunications: Edge computing enhances network performance, 

reduces latency, and enables new services for telecommunications 

providers. It supports applications like content delivery networks (CDNs), 



mobile edge computing (MEC), virtual network functions (VNFs), and 

network slicing. 

6. Healthcare: Edge computing is valuable in healthcare scenarios where 

immediate processing of data is crucial, such as remote patient 

monitoring, real-time analysis of patient data, and wearable health 

devices. It enables faster diagnoses, timely interventions, and improved 

patient outcomes. 

7. Smart Grids: Edge computing is employed in utility grids for real-time 

monitoring, fault detection, and load balancing. It facilitates localized 

analytics, grid management, and enables efficient energy distribution and 

utilization. 

8. Surveillance and Security: Edge computing enables video analytics, facial 

recognition, and real-time threat detection in security and surveillance 

applications. It reduces bandwidth requirements and improves response 

times in critical situations. 

9. Edge AI: Edge computing combined with artificial intelligence (AI) allows 

for localized AI processing and inference. It supports applications like real-

time video analytics, natural language processing, and intelligent edge 

devices. 

10. Remote and Harsh Environments: Edge computing is valuable in 

scenarios where internet connectivity is limited or intermittent, such as 

offshore operations, mining, and remote monitoring. It enables local data 

processing, decision-making, and resilience in challenging environments. 

These are just a few examples of the diverse use cases for edge computing. 

As the technology advances, new applications and industries are likely to 

benefit from its capabilities. 

 

 

EDGE COMPUTING HARDWARE ARCHITECTURES 

Edge computing hardware architectures can vary depending on the 

specific requirements of the application and the scale of deployment. Here 

are some common hardware architectures used in edge computing: 

1. Edge Servers: Edge servers are deployed at the edge of the network and 

are similar to traditional servers but with a smaller form factor. These 



servers have computing power, storage, and networking capabilities. They 

are capable of running applications and processing data locally, reducing 

the need for data transfer to the cloud. Edge servers can be standalone 

units or rack-mounted devices. 

2. Edge Gateways: Edge gateways act as intermediaries between edge 

devices and the cloud or data center. They provide connectivity, protocol 

translation, and local data processing capabilities. Edge gateways are 

often used in scenarios where multiple edge devices need to communicate 

with the cloud, or where edge devices have limited processing power. 

They aggregate data from multiple devices, preprocess it, and transmit 

relevant information to the cloud. 

3. Edge Appliances: Edge appliances are specialized hardware devices 

designed for specific edge computing applications. These appliances are 

purpose-built for tasks like video analytics, industrial automation, or IoT 

data processing. They are optimized for low power consumption, compact 

size, and specific computational requirements. Edge appliances are 

typically deployed in environments where dedicated processing 

capabilities are needed. 

4. Edge Accelerators: Edge accelerators are specialized hardware devices 

that focus on accelerating specific types of computations, such as AI 

inference or machine learning workloads. They can be in the form of 

dedicated chips, graphics processing units (GPUs), field-programmable 

gate arrays (FPGAs), or application-specific integrated circuits (ASICs). 

Edge accelerators enhance the performance and efficiency of edge 

computing systems, enabling faster and more power-efficient processing 

of complex workloads. 

5. Edge Sensors/Devices: Edge sensors or devices are the endpoints in an 

edge computing architecture. These devices collect data from the physical 

world, such as temperature, humidity, motion, or image data. They are 

typically low-power devices with limited computing resources. Edge 

sensors/devices are often deployed in large numbers and rely on edge 

servers, gateways, or appliances for data processing and analysis. 

6. Hybrid Cloud-Edge Architectures: In some cases, a hybrid architecture is 

used, combining elements of both cloud computing and edge computing. 

Certain processing tasks may be performed in the cloud for scalability or 

complex analytics, while time-sensitive or critical processing is handled at 



the edge. This architecture allows for a balance between local processing 

and utilizing the scalability and resources of the cloud. 

It's important to note that edge computing hardware architectures can be 

customized and tailored to specific use cases and requirements. The 

choice of architecture depends on factors such as the volume and nature 

of data, processing needs, latency requirements, power constraints, and 

scalability considerations. 

 

 

 EDGE PATFORMS 

Edge platforms, also known as edge computing platforms or edge 

computing frameworks, are software frameworks or platforms designed 

to facilitate the development, deployment, and management of edge 

computing applications and services. These platforms provide the 

necessary tools, libraries, and infrastructure to build and run applications 

at the edge of the network. 

Edge platforms typically offer a combination of the following features: 

1. Edge Node Management: Edge platforms enable the management and 

orchestration of edge nodes, which are the computing devices deployed 

at the network edge. They provide capabilities for node discovery, 

provisioning, configuration, and monitoring. This allows for centralized 

management and control of the distributed edge infrastructure. 

2. Application Development and Deployment: Edge platforms provide 

software development kits (SDKs), APIs, and development frameworks to 

streamline the development and deployment of edge applications. They 

often support multiple programming languages and provide libraries and 

tools for building and packaging edge applications. 

3. Data Management: Edge platforms offer mechanisms for data ingestion, 

storage, and processing at the edge. They provide data management 

capabilities such as data caching, synchronization, filtering, and 

aggregation. These features enable efficient and optimized data 

processing and storage close to the source. 



4. Connectivity and Communication: Edge platforms facilitate the 

connectivity and communication between edge devices, cloud services, 

and other components of the computing infrastructure. They provide 

protocols, APIs, and middleware for seamless integration and data 

exchange across the distributed edge network. 

5. Security and Privacy: Edge platforms prioritize security and privacy in edge 

computing environments. They offer features such as authentication, 

access control, encryption, and secure communication protocols to 

protect data and ensure the integrity and confidentiality of edge 

applications and services. 

6. Analytics and Machine Learning: Some edge platforms include built-in 

analytics and machine learning capabilities, allowing for real-time data 

analysis, pattern recognition, and intelligent decision-making at the edge. 

These features enable local data processing and derive actionable insights 

without relying on cloud-based resources. 

7. Integration with Cloud Services: Many edge platforms integrate with cloud 

services and platforms to enable seamless hybrid cloud-edge 

deployments. They provide connectors, APIs, and integration frameworks 

for easy integration with cloud-based applications, services, and data 

storage. 

8. Scalability and Resilience: Edge platforms support horizontal scaling and 

the ability to handle increasing workloads and edge devices. They provide 

mechanisms for load balancing, fault tolerance, and failover to ensure high 

availability and system resilience in edge computing environments. 

Examples of popular edge platforms include Microsoft Azure IoT Edge, 

AWS IoT Greengrass, Google Cloud IoT Edge, and Dell Technologies' Edge 

Platform. These platforms provide developers and organizations with the 

necessary tools and infrastructure to harness the power of edge 

computing and build innovative edge applications across various 

industries and use cases. 

 

 

EDGE VS FOG COMPUTING 



Edge computing and fog computing are two closely related concepts that 

both aim to bring computing capabilities closer to the data source in order 

to address the challenges of latency, bandwidth, and real-time processing. 

While they share similar goals, there are subtle differences between the 

two: 

Edge Computing: 

• Edge computing focuses on processing and analyzing data at or near the 

edge devices themselves, typically within the local network.  

• The emphasis is on minimizing latency, reducing data transfer, and 

enabling real-time or near-real-time decision-making. 

• In edge computing, processing is typically performed on individual edge 

devices or localized servers deployed at the edge of the network. 

• Edge computing is more decentralized, with each edge device or node 

capable of performing some level of data processing and analysis 

independently. 

 

Fog Computing: 

• Fog computing extends the concept of edge computing by introducing 

an intermediate layer between edge devices and the cloud.  

• The fog layer, also known as the edge cloud or fog nodes, consists of a 

distributed network of servers or gateways placed closer to the edge 

devices. 

• The fog layer acts as an intermediary for processing and analyzing data 

from edge devices before forwarding relevant information to the cloud.  

• Fog computing enables local data aggregation, filtering, and 

preprocessing, reducing the amount of data sent to the cloud and 

improving efficiency. 

• Fog computing provides a hierarchical architecture, with the fog layer 

acting as an additional tier between edge devices and the cloud, 

facilitating more complex computations and coordination across multiple 

edge devices. 

In summary, edge computing focuses on processing data at or near the 

edge devices themselves, while fog computing adds an intermediate layer 



of fog nodes between the edge devices and the cloud. Fog computing 

provides a more hierarchical and scalable architecture, enabling more 

advanced processing capabilities, coordination, and management at the 

edge. Both approaches aim to address the challenges of latency, 

bandwidth, and real-time processing in distributed computing 

environments, but with slightly different architectural considerations. 

 

The basic difference between edge computing and fog computing lies in 

the architectural placement of computing resources and where data 

processing occurs 

In summary, edge computing focuses on processing data at the edge 

devices themselves, while fog computing adds an intermediate layer (fog 

layer) between the edge devices and the cloud. The fog layer facilitates 

local data processing and acts as an intermediary for forwarding relevant 

information to the cloud, providing a hierarchical architecture for more 

advanced computations and coordination at the edge. 

 

COMMUNICATION MODULES-EDGE, FOG AND M2M 

Communication modules play a crucial role in enabling connectivity and 

data exchange within edge computing, fog computing, and machine-to-

machine (M2M) systems. Here's an overview of communication modules 

in each context: 

Edge Computing: In edge computing, communication modules facilitate 

communication between edge devices and other components in the 

computing infrastructure. These modules can include: 

1. Wireless Communication: Edge devices often use wireless communication 

technologies such as Wi-Fi, Bluetooth, Zigbee, or cellular networks (e.g., 

4G, 5G) to connect with each other and communicate with other 

networked devices. 

2. Ethernet: Wired Ethernet connections are commonly used to establish 

reliable and high-speed communication between edge devices, edge 

servers, and other network elements. 



3. MQTT: The Message Queuing Telemetry Transport (MQTT) protocol is 

commonly used in edge computing scenarios for lightweight and efficient 

communication between edge devices and the cloud or other devices. It 

is well-suited for resource-constrained environments. 

4. Protocols and APIs: Various communication protocols and APIs are 

employed to facilitate data exchange between edge devices and cloud 

services or other systems. These can include HTTP/REST APIs, WebSockets, 

OPC UA (for industrial automation), CoAP (Constrained Application 

Protocol), or custom protocols specific to the edge computing 

environment. 

Fog Computing: Fog computing builds upon edge computing and extends 

the communication capabilities to include the fog layer or fog nodes. 

Communication modules in fog computing can include: 

1. Fog-to-Edge Communication: Communication modules enable efficient 

and reliable data exchange between the fog layer and the edge devices. 

This can involve protocols such as MQTT, CoAP, or custom protocols 

specifically designed for fog computing environments. 

2. Inter-Fog Communication: Fog nodes within the fog layer need to 

communicate with each other for coordination, resource sharing, and data 

aggregation. Communication modules such as messaging queues, pub-

sub systems, or custom protocols facilitate inter-fog communication. 

3. Cloud-to-Fog Communication: Communication modules enable 

communication between the fog layer and cloud services or data centers. 

This can involve standard protocols such as HTTP/REST APIs or message 

queues like MQTT, as well as specific fog-to-cloud integration frameworks 

provided by fog computing platforms. 

Machine-to-Machine (M2M) Communication: M2M communication refers 

to direct communication between machines or devices without human 

intervention. Communication modules in M2M systems include: 

1. Wireless Communication: M2M devices often utilize wireless 

communication technologies such as cellular networks, Wi-Fi, Bluetooth, 

or Zigbee to establish connections and exchange data with other devices 

in the network. 



2. IoT Protocols: M2M systems commonly employ protocols specifically 

designed for IoT communication, such as MQTT, CoAP, or AMQP 

(Advanced Message Queuing Protocol). These protocols enable efficient 

and lightweight communication between devices and facilitate 

interoperability. 

3. Industrial Protocols: In industrial settings, M2M communication often 

involves industry-specific protocols such as Modbus, OPC UA, or BACnet, 

which are used for device-to-device communication in areas like industrial 

automation, building management systems, or smart grids. 

4. APIs and Integration: M2M systems may utilize APIs and integration 

frameworks to enable communication between devices and backend 

systems, cloud platforms, or other applications. These APIs can be RESTful 

APIs, custom APIs, or platform-specific integration mechanisms. 

In summary, communication modules in edge computing, fog computing, 

and M2M systems encompass a range of wireless and wired technologies, 

protocols, and APIs that facilitate efficient data exchange and connectivity 

between devices, nodes, layers, and external systems. 
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2
IoT Architecture and  

Core IoT Modules
The edge computing and IoT ecosphere starts with the simplest of sensors located 
in the remotest corners of the earth and translates analog physical effects into 
digital signals (the language of the Internet). Data then takes a complex journey 
through wired and wireless signals, various protocols, natural interference, and 
electromagnetic collisions, before arriving in the ether of the Internet. From there, 
packetized data will traverse various channels arriving at a cloud or large data 
center. The strength of IoT is not just one signal from one sensor, but the aggregate 
of hundreds, thousands, potentially millions of sensors, events, and devices.

This chapter starts with a definition of IoT versus machine-to-machine architectures. 
It also addresses the architect's role in building a scalable, secure, and enterprise IoT 
architecture. To do that, an architect must be able to speak to the value the design 
brings to a customer. The architect must also play multiple engineering and product 
roles in balancing different design choices.

This chapter provides an outline to how the book is organized and how an architect 
should approach reading the book and performing their role as an architect. The 
book treats architecture as a holistic exercise involving many systems and domains 
of engineering. This chapter will highlight:
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• Sensing and power: We cover the transformation of physical to digital
sensing, power systems, and energy storage.

• Data communication: We delve into the communication of devices using
near-meter, near-kilometer, and extreme-range communication systems
and protocols as well as networking and information theory.

• Edge computing: Edge devices have multiple roles from routing, to
gateways, edge processing and cloud-edge (fog) interconnect. We examine
the role of the edge and how to successfully build and partition edge
machines. We also look at communication protocols from the edge to the
cloud.

• Compute, analytics and machine learning: We then examine dataflow
through cloud and fog computing, as well as advanced machine learning
and complex event processing.

• Threat and security: The final content investigates security and the
vulnerability of the largest attack surface on earth.

A connected ecosystem
Nearly every major technology company is investing or has invested heavily in 
IoT and the edge computing space. New markets and technologies have already 
formed (and some have collapsed or been acquired). Throughout this book, we 
will touch on nearly every segment in information technology, as they all have 
a role in IoT.
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Figure 1: Example of the architectural layers of an IoT/edge computing system. This is one of the many 
potential configurations that must be considered by the architect. Here we show the sensor-to-cloud routes 
through direct communication and through edge gateways. We also highlight the functionality provided 

by the edge compute nodes and the cloud components.
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As illustrated in the preceding figure, here are some of the components within an 
IoT/edge solution that we will study:

• Sensors, actuators, and physical systems: Embedded systems, real-time
operating systems, energy-harvesting sources, micro-electro-mechanical
systems (MEMs).

• Sensor communication systems: Wireless personal area networks (WPANs)
reach from 0 cm to 100 m. Low-speed and low-power communication
channels, often non-IP based, have a place in sensor communication.

• Local area networks (LANs): Typically, IP-based communication systems
such as 802.11 Wi-Fi used for fast radio communication, often in peer-to-peer
or star topologies.

• Aggregators, routers, gateways: Embedded systems providers, cheapest
vendors

• Wide area networks (WANs): Cellular network providers using LTE
or Cat M1, satellite network providers, low-power wide-area network
(LPWAN) providers like Sigfox or LoRa. They typically use Internet
transport protocols targeted for IoT and constrained devices like MQTT,
CoAP, and even HTTP.

• Edge computing: Distributing computing from on-premise data centers
and cloud to closer to the sources of data (sensors and systems). This is
to remove latency issues, improve response time and real-time systems,
manage the lack of connectivity, and build redundancy of a system. We
cover processors, DRAM, and storage. We also study module vendors,
passive component manufacturers, thin client manufacturers, cellular
and wireless radio manufacturers, middleware providers, fog framework
providers, edge analytics packages, edge security providers, certificate
management systems, WPAN to WAN conversion, routing protocols,
and software-defined networking/software-defined perimeters.

• Cloud: Infrastructure as a service provider, platform as a service provider,
database manufacturers, streaming and batch processing manufacturers,
data analytics packages, software as a service provider, data lake providers,
and machine learning services.

• Data analytics: As the information propagates to the cloud en masse,
dealing with volumes data and extracting value is the job of complex event
processing, data analytics, and machine learning techniques. We study
different edge and cloud analytic techniques from statistical analysis and
rules engines to more advanced machine learning techniques.
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• Security: Tying the entire architecture together is security. End-to-end
security from edge hardening, protocol security, to encryption.  Security
will touch every component from physical sensors to the CPU and digital
hardware to the radio communication systems to the communication
protocols themselves. Each level needs to ensure security, authenticity,
and integrity. There cannot be a weak link in the chain, as the IoT will
form the largest attack surface on earth.

This ecosystem will need talents from the body of engineering disciplines, such as:

• Device physics scientists developing new sensor technologies and many-year
batteries

• Embedded system engineers working on driving sensors at the edge
• Network engineers capable of working in a personal area network or wide

area network, as well as on a software-defined networking
• Data scientists working on novel machine learning schemes at the edge and

in the cloud
• DevOps engineers to successfully deploy scalable cloud solutions as a well

as fog solutions

IoT will also need service vendors such as solution provision firms, system 
integrators, value-added resellers, and OEMs.

IoT versus machine-to-machine versus SCADA
One common area of confusion in the IoT world is what separates it from the 
technologies that define machine to machine (M2M). Before IoT became part 
of the mainstream vernacular, M2M was the hype. Well before M2M, SCADA 
(supervisory control and data acquisition) systems were the mainstream of 
interconnected machines for factory automation. While these acronyms refer to 
interconnected devices and may use similar technologies, there are differences. 
Let's examine these more closely:

• M2M: It is a general concept involving an autonomous device
communicating directly to another autonomous device. Autonomous refers
to the ability of the node to instantiate and communicate information with
another node without human intervention. The form of communication is
left open to the application. It may very well be the case that an M2M device
uses no inherent services or topologies for communication. This leaves out
typical Internet appliances used regularly for cloud services and storage.
An M2M system may communicate over non-IP based channels as well,
such as a serial port or custom protocol.
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• IoT: IoT systems may incorporate some M2M nodes (such as a Bluetooth 
mesh using non-IP communication), but they aggregate data at an edge 
router or gateway. An edge appliance like a gateway or router serves as 
the entry point onto the Internet. Alternatively, some sensors with more 
substantial computing power can push the Internet networking layers onto 
the sensor itself. Regardless of where the Internet on-ramp exists, the fact that 
it has a method of tying into the Internet fabric is what defines IoT.

• SCADA: This term refers to supervisory control and data acquisition. 
These are industrial control systems that have been used in factory, facility, 
infrastructure and manufacturing automation since the 1960s. They typically 
involve programmable logic controllers (PLCs) that monitor or controls 
various sensors and actuators on machinery. SCADA systems are distributed 
and only recently have been connected to Internet services. This is where 
Industry 2.0 and the new growth of manufacturing is taking place. These 
systems use communication protocols such as ModBus, BACNET, and 
Profibus.

By moving data onto the Internet for sensors, edge processors, and smart devices, 
the legacy world of cloud services can be applied to the simplest of devices. Before 
cloud technology and mobile communication became mainstream and cost-effective, 
simple sensors and embedded computing devices in the field had no good means 
of communicating data globally in seconds, storing information for perpetuity, and 
analyzing data to find trends and patterns. As cloud technologies advanced, wireless 
communication systems became pervasive, new energy devices like lithium-ion 
became cost-effective, and machine learning models evolved to produce actionable 
value. This greatly improved the IoT value proposition. Without these technologies 
coming together when they did, we would still be in an M2M world.

The value of a network and Metcalfe's and 
Beckstrom's laws
It has been argued that the value of a network is based on Metcalfe's law. 
Robert Metcalfe in 1980 formulated the concept that the value of any network is 
proportional to the square of connected users of a system. In the case of IoT, "users" 
may mean sensors or edge devices with some form of communication.

Generally speaking, Metcalfe's law is represented as:

𝑉𝑉 ∝  𝑁𝑁2 
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Where:

• V = Value of the network
• N = Number of nodes within the network

A graphical model helps to understand the interpretation as well as the crossover 
point, where a positive return on investment (ROI) can be expected:

Figure 2: Metcalfe's law: The value of a network is represented as proportional to N2. The cost of each node 
is represented as kN where k is an arbitrary constant. In this case, k represents a constant of $10 per IoT edge 
sensor. The key takeaway is the crossover point occurs rapidly due to the expansion of value and indicates 

when this IoT deployment achieves a positive ROI.

An example validating Metcalfe's law to the value of blockchains and cryptocurrency 
trends was recently conducted. We will go much deeper into blockchains in the 
security chapter.

Metcalfe's law does not account for service degradation in cases in which service 
degrades as the number of users and/or data consumption grows, but the network 
bandwidth does not. Metcalfe's law also doesn't account for various levels of 
network service, unreliable infrastructure (such as 4G LTE in a moving vehicle), 
or bad actors affecting the network (for example, denial of service attacks).

A recent white paper by Ken Alabi finds that blockchain networks 
also appear to follow Metcalfe's law, Electronic Commerce Research 
and Applications, Volume 24, C (July 2017), page number 23-29.
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To account for these circumstances, we use Beckstrom's law:

∑𝑉𝑉𝑖𝑖,𝑗𝑗
𝑛𝑛

𝑖𝑖=1
=∑∑

𝐵𝐵𝑖𝑖,𝑗𝑗,𝑘𝑘 − 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘
(1 + 𝑟𝑟𝑘𝑘)𝑡𝑡𝑘𝑘

𝑚𝑚

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1
 

Where:

• Vi,j: Represents the present value of the network for device i on network j
• i: An individual user or device on the network
• j: The network itself
• k: A single transaction
• Bi,j,k: The benefit that value k will bring to device i on network j
• Ci,j,k: The cost of a transaction k to a device i on network j
• rk: The discount rate of interest to the time of transaction k
• tk: The elapsed time (in years) to transaction k
• n: The number of individuals
• m: The number of transactions

Beckstrom's law teaches us that to account for the value of a network (for example, 
an IoT solution), we need to account for all transactions from all devices and sum 
their value. If the network j goes down for whatever reason, what is the cost to the 
users? This is the impact an IoT network brings and is a more representative real-
world attribution of value. The most difficult variable to model in the equation is 
the benefit of a transaction B. While looking at each IoT sensor, the value may be 
very small and insignificant (for example, a temperature sensor on some machine 
is lost for an hour). At other times, it can be extremely significant (for example, a 
water sensor battery died, and a retailer basement is flooded, causing significant 
inventory damage and insurance adjustments).

An architect's first step in building an IoT solution should be to understand what 
value they are bringing to what they are designing. In the worst case, an IoT 
deployment becomes a liability and actually produces negative value for a customer.
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IoT and edge architecture
The coverage in this book will span many technologies, disciplines, and levels 
of expertise. As an architect, one needs to understand the impact that choosing a 
certain design aspect will have on scalability and other parts of the system. The 
complexities and relationships of IoT technologies and services are significantly 
more intercoupled than traditional technologies not only because of the scale but also 
due to the disparate types of architecture. There is a bewildering number of design 
choices. For example, as of this writing, we counted over 700 IoT service providers 
alone offering cloud-based storage, SaaS components, IoT management systems, 
middleware, IoT security systems, and every form of data analytics one can imagine. 
Add to that the number of different PAN, LAN, and WAN protocols that are 
constantly changing and varying by region. Choosing the wrong PAN protocol could 
lead to poor communications and significantly low signal quality that can only be 
resolved by adding more nodes to complete a mesh. The role of an architect should 
ask and provide solutions for problems that span the system as a whole:

• The architect needs to consider interference effects in the LAN and WAN—
how will the data get off the edge and on the Internet? 

• The architect needs to consider resiliency and how costly the loss of data is. 
Should resiliency be managed within the lower layers of the stack, or in the 
protocol itself?

• The architect must also make choices of Internet protocols such as MQTT 
versus CoAP and AMQP, and how that will work if he or she decides to 
migrate to another cloud vendor.

Choices also need consideration with regards to where processing should reside. 
This opens up the notion of edge/fog computing to process data close to its source 
to solve latency problems, but more importantly to reduce bandwidth and costs of 
moving data over WANs and clouds. Next, we consider all the choices in analyzing 
the data collected. Using the wrong analytic engine may result in useless noise or 
algorithms that are too resource-intensive to run on edge nodes. How will queries 
from the cloud back to the sensor affect the battery life of the sensor device itself? 
Add to this litany of choice, and we must layer on security as the IoT deployment we 
have built is now the largest attack surface in our city. As you can see, the choices are 
many and have relationships with one another.
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There are many choices to consider. When you account for the number of 
edge computing systems and routers, PAN protocols, WAN protocols, and 
communication, there are over 1.5 million different combinations of architectures to 
choose from:

Figure 3: IoT design choices: The full spectrum of various levels of IoT architecture from the sensor to 
the cloud and back.

Role of an architect
The term architect is often used in technical disciplines. There are software architects, 
system architects, and solution architects. Even within specific domains, such as 
computer science and software engineering, you may see people with the title SaaS 
architect, cloud architect, data science architect, and so on. These are individuals who 
are recognized experts with tangible skills and experience in a domain. These types 
of specialized vertical domains cross several horizontal technologies. In this book, we 
are targeting the IoT architect.

This is a horizontal role, meaning it will touch a number of these domains and bring 
them together for a usable, secure, and scalable system.
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Whether you are disciplined in electrical engineering or computer science, or have 
domain expertise in cloud architectures, this material will help you understand a 
holistic system—which should be, by definition, part of the role of an architect.

This book is also intended for geographically global and massive scaling. It is 
one thing to build a proof of concept with one or two endpoint devices. It is by far 
a different challenge to build an IoT solution that stretches multiple continents, 
different service providers, and thousands of endpoints. While every topic can 
be used for hobbyist and maker movements, this is intended to scale to global 
enterprise systems on the order of thousands to millions of edge devices.

The architect will ask questions for the full stack of connected systems. He or she 
will be aware of how optimizing for one solution may in fact deliver a less than 
desirable effect in another part of the system.

For example:

• Will the system scale and to what capacity? This will affect decisions on 
wide area networking, edge-to-cloud protocols, and middleware-to-cloud 
provisioning systems.

• How will the system perform with loss of connectivity? This will impact 
the choices of edge systems, storage components, 5G service profiles, and 
network protocols.

• How will the cloud manage and provision edge devices? This will affect 
decisions on edge middleware and fog components, and security services.

• How will my customer's solution work in a noisy RF environment? This 
will affect decisions on PAN communications and edge components.

• How will software be updated on a sensor? This will affect decisions 
around security protocols, edge hardware and storage, PAN network 
protocols, middleware systems, sensor costs and resources, and cloud 
provisioning layers.

We will go as deep as necessary to understand an entire IoT system 
and bring a system together. At times, we will go into pure theory, 
such as information and communication theory. Other times, we 
will brush on topics that are on the periphery of IoT systems or are 
rooted in other technologies. By reading and referencing this book, 
the architect will have a go-to guide on different aspects of IoT that 
are all needed to build a successful system.
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• What data will be useful to improving my customer's performance? This 
will affect decisions on what analytics tools to use, where to analyze the data, 
how data will be secured and denatured, and edge/cloud partitioning.

• How will devices, transactions, and communication be secured from end 
to end?

Part 1 – Sensing and power
An IoT transaction starts or ends with an event: a simple motion, a temperature 
change, perhaps an actuator moving on a lock. Unlike many IT devices in existence, 
IoT in a large part is about a physical action or event. It responds to affect a real-
world attribute. Sometimes this involves considerable data being generated from a 
single sensor, such as auditory sensing for preventative maintenance of machinery. 
Other times, it's a single bit of data indicating vital health data from a patient. 
Whatever the case may be, sensing systems have evolved and made use of Moore's 
law in scaling to sub-nanometer sizes and significantly reduced costs. Part 1 explores 
the depths of MEMs, sensing, and other forms of low-cost edge devices from a 
physical and electrical point of view. The part also details the necessary power and 
energy systems to drive these edge machines. We can't take power for granted at 
the edge. Collections of billions of small sensors will still require a massive amount 
of energy in total to power. We will revisit power throughout this book, and how 
innocuous changes in the cloud can severely impact the overall power architecture 
of a system.

Part 2 – Data communication
A significant portion of this book surrounds connectivity and networking. There 
are countless other sources that dive deep into application development, predictive 
analytics, and machine learning. This book too will cover those topics, but an 
equal amount of emphasis is given to data communications. The IoT wouldn't 
exist without significant technologies to move data from the remotest and most 
hostile environment to the largest data centers at Google, Amazon, Microsoft, and 
IBM. The acronym IoT contains the word Internet, and because of that, we need to 
dive deep into networking, communications, and even signal theory. The starting 
point for IoT isn't sensors or the application; it's about connectivity, as we will see 
throughout this book. A successful architect will understand the constraints of 
Internetworking from a sensor to a WAN and back again.

This communication and networking section starts with theory and mathematical 
foundations of communication and information. Preliminary tools and models are 
needed by a successful architect not only to understand why certain protocols are 
constrained, but also to design future systems that scale successfully at IoT levels. 
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These tools include wireless radio dynamics like range and power analysis, signal-to-
noise ratio, path loss, and interference. Part 2 also details foundations of information 
theory and constraints that affect overall capacity and quality of data. The 
foundations of Shannon's law will be explored. The wireless spectrum is also finite 
and shared, so an architect deploying a massive IoT system will need to understand 
how the spectrum is allocated and governed.

Theory and models explored in this part will be reused in other parts of the book.

Data communication and networking will then build up from the near-range and 
near-meter communication systems known as personal area networks (PANs), 
typically using non-Internet protocol messages. The chapter on PAN will include 
the new Bluetooth 5 protocol and mesh, as well as Zigbee and Z-Wave in depth. 
These represent the plurality of all IoT wireless communication systems. Next, 
we explore wireless local area networks and IP-based communication systems 
including the vast array of IEEE 802.11 Wi-Fi systems, thread, and 6LoWPAN. 
The chapter also investigates new Wi-Fi standards such as 802.11p for in-vehicle 
communication.

The part concludes with long-range communication using cellular (4G LTE) 
standards, and dives deep into the understanding and infrastructure to support 4G 
LTE and new standards dedicated to IoT and machine-to-machine communication, 
such as Cat-1 and Cat-NB. The last chapter also covers the 5G standard and 
publicly licensed cellular (MulteFire) to prepare the architect for future long-range 
transmissions where every device is connected in some capacity. A proprietary 
protocol like LoRaWAN and Sigfox are also explored to understand the differences 
between architectures.

Part 3 – Edge computing
Edge computing brings nontraditional computing power close to the sources of 
data. While embedded systems have existed in devices for the last 40 years, edge 
computing is more than a simple 8-bit microcontroller or analog-to-digital converter 
circuit used to display temperature. Edge computing attempts to solve critical 
problems as the number of connected objects and the complexity of use cases 
grows in the industry. For example, in IoT areas we need the following:

• Accumulate data from several sensors and provide an entry point to 
the Internet.

• Resolve critical real-time responses for safety-critical situations like remote 
surgery or automated driving.
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• Solutions that can manage an overwhelming amount of processing of 
unstructured data like video data or even streaming of video to save on 
costs of transporting the data over wireless carriers and cloud providers.

Edge computing also comes in layers as we will examine with 5G infrastructure, 
multiaccess edge computing, and fog computing.

We will closely examine the hardware, operating systems, mechanics, and power 
that an architect must consider for different edge systems. For example, an architect 
may need a system that delivers on a constraining cost and power requirement 
but may forgo some processing ability. Other designs may need to be extremely 
resilient as the edge computer may be in a very remote region and essentially need 
to manage itself.

To bridge data from sensors to the Internet, two technologies are needed: gateway 
routers and supporting IP-based protocols designed for efficiency. This part explores 
the role of router technologies at the edge for bridging sensors on a PAN network 
to the Internet. The role of the router is especially important in securing, managing, 
and steering data. Edge routers orchestrate and monitor underlying mesh networks 
and balance and level data quality. The privatization and security of data is also 
critical. Part 3 will explore the router role in creating virtual private networks, 
virtual LANs, and software-defined wide area networks. There literally may be 
thousands of nodes serviced by a single edge router, and in a sense, it serves as 
an extension to the cloud, as we will see in the Chapter 11, Cloud and Fog Topologies.

This part continues with the protocols used in IoT communication between nodes, 
routers, and clouds. The IoT has given way to new protocols rather than the legacy 
HTTP and SNMP types of messaging used for decades. IoT data needs efficient, 
power-aware, and low-latency protocols that can be easily steered and secured in 
and out of the cloud. This part explores protocols such as the pervasive MQTT, as 
well as AMPQ and CoAP. Examples are given to illustrate their use and efficiency.

Part 4 – Compute, analytics, and machine 
learning
At this point, we must consider what to do with the data streaming in from 
edge nodes into a cloud service. First, we begin by talking about the aspects of 
cloud architectures such as SaaS, IaaS, and PaaS systems. An architect needs to 
understand the data flow and typical design of cloud services (what they are and 
how they are used). We use OpenStack as a model of cloud design and explore the 
various components from ingestor engines to data lakes to analytics engines. 
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Understanding the constraints of cloud architectures is also important to make 
a good judgment on how a system will deploy and scale. An architect must also 
understand how latency can affect an IoT system. Alternatively, not everything 
belongs in the cloud. There is a measurable cost in moving all IoT data to a cloud 
versus processing it at the edge (edge processing) or extending cloud services 
downward into an edge computing device (fog computing). This part dives deep 
into new standards of fog computing such as the OpenFog architecture.

Data that has been transformed from a physical analog event to a digital signal may 
have actionable consequences. This is where the analytics and rules engines of the 
IoT come in to play. The level of sophistication for an IoT deployment is dependent 
on the solution being architected. In some situations, a simple rules engine looking 
for anomalous temperature extremes can easily be deployed on an edge router 
monitoring several sensors. In other situations, a massive amount of structured 
and unstructured data may be streaming in real time to a cloud-based data lake, 
and require both fast processing for predictive analytics and long-range forecasting 
using advanced machine learning models, such as recurrent neural networks in a 
time-correlated signal analysis package. This part details the uses and constraints 
of analytics from complex event processors to Bayesian networks to the inference 
and training of neural networks.

Part 5 – Threat and security in IoT
We conclude the book with a survey of IoT compromises and attacks. In many cases, 
IoT systems will not be secured in a home, or in a company. They will be in public, 
in very remote areas, in moving vehicles, or even inside a person. The IoT represents 
the single biggest attack surface for any type of cyberattack. We have seen countless 
academic hacks, well-organized cyber assaults, and even nation-state security 
breaches with IoT devices being the target. Part 5 will detail several aspects of such 
breaches and the types of remediation any architect must consider when making a 
consumer or enterprise IoT deployment a good citizen of the Internet. We explore 
the proposed congressional act to secure the IoT and understand the motivation 
and impact of such a government mandate.

This part will checklist the typical security provisions needed for IoT, or any network 
component. Details of new technologies such as blockchains and software-defined 
perimeters will also be explored to provide insight into future technologies that will 
be needed to secure the IoT.
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Summary
This book will bridge the spectrum of technologies that comprise edge computing 
and the IoT. In this chapter, we summarized the domains and topics covered in the 
book. An architect must be cognizant of the interactions between these disparate 
engineering disciplines to build a system that is scalable, robust, and optimized. 
An architect will also be called upon to provide supporting evidence that the IoT 
system provides a value to the end user or the customer. Here, we learned about 
the application of Metcalfe's and Beckstrom's laws as tools for supporting an IoT 
deployment.

In the next chapters, we will learn about communication from sensors and edge 
nodes to the Internet and cloud. First, we will examine the fundamental theory 
behind radio signals and systems and their constraints and limits, and then we 
will dive into near-range and long-range wireless communication.





Connecting to your Raspberry Pi via SSH

The Raspberry Pi can be controlled like any other Desktop computer using a keyboard, mouse, 
and monitor. However, there are also various ways to command the Raspberry Pi remotely, of 
which SSH is one of the best and often used.
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What is SSH

 Secure Shell (SSH) enables you to access the command line of a Raspberry Pi from another 
computer or device on the same network. This is very handy for quickly installing software or 
editing configuration files. SSH is pre-installed on Linux, Mac and some Windows operating 
systems and can also be installed on mobile devices.

Enable SSH On the Raspberry pi

By default , SSH disabled on the raspberry pi .It is however very easy to enable it, both using the 
desktop and via the terminal .To enable SSH via desktop ,go to start menu,> preferences > 
raspberry pi configuration.





Now click on interface and enable next to SSH and click ok.



To enable SSH via the terminal, open a terminal window and enter sudo raspi-config. Now with 
the arrows select Interfacing Options, navigate  to and select SSH, choose Yes, and select Ok.



Connecting via SSH

 Now SSH is enabled, we need to know the hostname of the Raspberry Pi or use its IP address to 
connect to it. 

 Once enabled, you can connect to your raspberry pi from your computer.

 Here are a few tools  you can use to do this depending on your operating system.



Enable SSH on the host device

 SSH is standard available on Linux distributions and on Mac so should work automatically.

 To enable SSH on a Windows 10 computer, make sure it has Update or later and go to 
settings>Apps > features >Manage optional features>Add a feature, and choose to install 
OpenSSH Client.

Passwordless SSH

When using SSH, each time you connect you will be asked for the password of your Raspberry Pi.

In some cases it may be preferable to access your Raspberry Pi from another computer without a
password, such as to (automatically) send files using rsync To enable password-less access with SSH    
you will need to generate an SSH key.



What we are going to discuss
 What is raspberrypi?

 History of raspberrypia?

 Founder of raspberrypia?

 Goal  of raspberrrypia?

 Hardware layout?

 Versions of Raspberry pi?

 Advantages 

 Applications



What is raspberrypi?
The Raspberry Pi is a low cost, credit-

card sized computer that plugs into 
a computer monitor or TV, and uses 
a standard keyboard and mouse.

Pi project was initiated by Eben Upton and 
his colleagues at the University of 
Cambridge’s Computer Laboratory

 2008: The first prototype was developed







Present version of raspberry pi
 The latest version of Raspberry pi is pi 5 was 

announced on September 28, 2023

 Improvements in hardware and software reportedly make 
the Pi 5 more than twice as powerful as the Pi 4. 

 Comes with an I/O-controller designed in-house, a power 
button. 



Who invented Raspberry pi and when?
 Eben Upton is a British engineer, creator of the 

Raspberry Pi and the Raspberry Pi Foundation.
He studied physics and engineering at the Cambridge 
university before working for prestigious companies, 
like Broadcom, Intel and IBM.

 The Raspberry Pi story started in 2006 with the 
creation of the first prototypes inspired from the 
BBC Micro.



This is BBC  Micro picture



Goal  of raspberrypia?

The main goal was to 
help young people 

to discover 
computers at low cost 



Raspberrypia-diagram







Advantages of raspberrypi

1

• It is portable computer

• Faster processor

2
• Low power consumption

3

• Low cost

• Perform Small tasks





Applications
❑Low cost survelliance system

❑Super computer using raspberrypi

❑Pi pad tablet

❑Pi coding websites



Implementing a project using a Raspberry Pi involves several steps, from setting up 

the hardware to writing and running code. Here's a general outline of how to 

implement a project using a Raspberry Pi as a microcomputer: 

1. Gather Hardware: Obtain the necessary hardware components for your 

project. This can include a Raspberry Pi board, power supply, microSD card, 

peripherals (keyboard, mouse, monitor), sensors, actuators, and any other 

components specific to your project. 

2. Prepare the MicroSD Card: Download the official Raspberry Pi OS (formerly 

known as Raspbian) from the Raspberry Pi website. Use the Raspberry Pi 

Imager tool to write the OS image to the microSD card. 

3. Initial Setup: Insert the microSD card into the Raspberry Pi and power it up. 

Follow the on-screen instructions to complete the initial setup, including 

configuring language, time zone, and setting up a password. You can also 

enable SSH and VNC for remote access. 

4. Connect Peripherals: If your project requires peripherals like a monitor, 

keyboard, and mouse, connect them to the Raspberry Pi. Alternatively, you 

can set up remote access via SSH or VNC. 

5. Software Updates: After the initial setup, it's a good idea to update the 

software packages on the Raspberry Pi. Open a terminal and run the following 

commands: 

6. Install Libraries and Dependencies: Depending on your project 

requirements, you might need to install additional libraries or software 

packages. Use package managers like apt or pip to install the necessary tools. 

7. Write and Run Code: Develop your project's code using a programming 

language of your choice (Python is commonly used for Raspberry Pi projects 

due to its ease of use). Write scripts to interact with sensors, control actuators, 

and perform any desired functionalities. 

8. GPIO Programming: Raspberry Pi's General Purpose Input/Output (GPIO) 

pins allow you to interface with external components like sensors, LEDs, and 

motors. Libraries like RPi.GPIO make it easy to control these pins. Here's an 

example to toggle an LED connected to GPIO pin 17: 

9. Testing and Debugging: Test your code and hardware components 

thoroughly. Use print statements, debugging tools, and error handling to 

identify and fix issues. 

10. Deployment: Once your project is working as expected, you can deploy it in 

its intended environment. This could involve securing components, setting up 

power management, and ensuring the project runs reliably. 

11. Monitoring and Maintenance: Monitor the performance of your project over 

time. Make sure to keep software and libraries updated, especially if security 

updates are released. 



12. Documentation: Document your project's setup, code, wiring diagrams, and 

any other relevant information. This will be helpful for future reference and 

sharing your project with others. 

Remember that the specific steps and details will vary depending on the nature of 

your project. Whether it's a home automation system, a weather station, a robot, or 

any other application, the Raspberry Pi's versatility and community support can be 

invaluable resources throughout your implementation process. 

 

Device Interfacing using Rasberry Pi: 

Interfacing devices with a Raspberry Pi involves connecting external hardware 

components such as sensors, actuators, and displays to the GPIO pins of the 

Raspberry Pi. Here's a general guide on how to interface devices with a Raspberry Pi: 

1. Choose Your Device: Decide on the device you want to interface with your 

Raspberry Pi. This could be a sensor (e.g., temperature sensor, motion sensor), 

an actuator (e.g., LED, motor), a display (e.g., LCD screen), or any other 

electronic component. 

2. Understand GPIO Pins: The Raspberry Pi has a set of GPIO pins that can be 

used for digital input and output. Make sure you understand the pin 

numbering and capabilities of these GPIO pins. The pins can be used for both 

digital (on/off) and analog (variable) signals. 

3. Check Pinout Diagram: Refer to the official Raspberry Pi pinout diagram or 

use online resources to understand the layout of the GPIO pins and their 

functions. 

4. Wiring and Connection: Wire your device according to its specifications and 

the Raspberry Pi's GPIO pinout. You might need jumper wires, a breadboard, 

and possibly resistors or level shifters, depending on the voltage levels and 

requirements of your device. 

5. GPIO Libraries: To control and read data from the GPIO pins, you'll need to 

use programming libraries. The RPi.GPIO library is commonly used for Python 

programming. Install it if not already installed: 

6. Write Code: Create a Python script to interact with your device using the GPIO pins. 

Here's a simple example of toggling an LED connected to GPIO pin 17: 

7. Test and Debug: Run your code and test the device's behaviour. Debug any 

issues that arise, such as incorrect wiring, incorrect pin configuration, or errors 

in your code. 

8. Interface with Sensors: Interfacing with sensors typically involves reading 

data from their output pins. For example, if you're using a digital temperature 

sensor: 



9. Interface with Displays: Interfacing with displays, such as LCD screens, might 

require additional libraries specific to the display type. Follow the 

documentation provided by the display manufacturer to correctly wire and 

program the display. 

10. Advanced Interfacing: Depending on your project's complexity, you might 

need to use analog-to-digital converters (ADCs) for analog sensors, motor 

driver circuits for controlling motors, and other hardware components. 

11. Safety Considerations: When working with electronic components, especially 

devices that involve higher voltages or currents, prioritize safety. Double-

check your wiring, use appropriate components like resistors, and avoid short 

circuits. 

12. Documentation: Document your wiring diagrams, code, and any 

modifications you make. This documentation will be helpful for 

troubleshooting and future reference. 

Remember that the specifics of interfacing devices will depend on the devices 

themselves and your project's requirements. Always refer to the datasheets and 

documentation of the components you're using for accurate and detailed information. 
 

Edge to Cloud Protocols: 

Edge-to-cloud communication protocols are crucial for connecting devices at the 

edge of a network (like sensors and IoT devices) with cloud-based services and 

applications. These protocols facilitate the transfer of data, commands, and 

information between the edge devices and cloud platforms. Here are some 

commonly used edge-to-cloud communication protocols: 

1. MQTT (Message Queuing Telemetry Transport): MQTT is a lightweight 

publish-subscribe messaging protocol designed for IoT applications. It is well-

suited for scenarios where devices need to send data to the cloud or receive 

commands from the cloud. MQTT uses a broker-based architecture, allowing 

devices to publish data to topics and subscribe to topics to receive data. 

2. CoAP (Constrained Application Protocol): CoAP is another lightweight 

protocol designed for constrained devices and networks. It is specifically 

optimized for resource-constrained environments and supports both request-

response and publish-subscribe models. CoAP is often used in scenarios 

where devices need to communicate over low-power networks. 

3. HTTP/HTTPS (Hypertext Transfer Protocol/Secure): While not specifically 

designed for IoT, HTTP and HTTPS are widely used for communication 

between edge devices and the cloud. HTTP can be used for sending RESTful 

API requests and receiving responses, making it suitable for applications that 

require cloud-based data retrieval and control. 



4. AMQP (Advanced Message Queuing Protocol): AMQP is a versatile 

protocol that provides a standardized way for different applications to 

communicate using a message-oriented paradigm. It supports both publish-

subscribe and queuing models, making it suitable for various edge-to-cloud 

communication scenarios. 

5. DDS (Data Distribution Service): DDS is a protocol used in real-time and 

mission-critical systems where reliable and high-performance data exchange 

is essential. It supports data-centric publish-subscribe communication and is 

often used in applications such as industrial automation and aerospace. 

6. WebSocket: WebSocket is a communication protocol that provides full-

duplex, bidirectional communication channels over a single TCP connection. 

It's particularly useful for applications requiring real-time data updates or 

interactive communication between edge devices and the cloud. 

7. AMT (Asynchronous Messaging Transport): AMT is a protocol designed to 

efficiently transport large volumes of data between edge devices and cloud 

services. It's optimized for handling streaming data and is suitable for 

applications such as multimedia streaming and remote monitoring. 

8. DDS (Data Distribution Service): DDS is a protocol that focuses on real-time 

data distribution and communication in distributed systems. It's commonly 

used in scenarios where high-performance and low-latency communication 

are critical, such as industrial automation and military applications. 

9. Sigfox and LoRaWAN: These are proprietary low-power, wide-area (LPWA) 

network protocols designed for IoT devices with long-range connectivity. They 

are often used for edge-to-cloud communication in applications requiring 

extended battery life and communication over large areas. 

10. Bluetooth and BLE (Bluetooth Low Energy): For short-range 

communication between edge devices and cloud gateways, Bluetooth and BLE 

are commonly used. They are suitable for applications like home automation, 

wearables, and proximity-based interactions. 

When selecting an edge-to-cloud communication protocol, consider factors such as 

data volume, latency requirements, power constraints, security, and compatibility 

with your cloud platform. Your choice will depend on the specific needs of your IoT 

project and the technology stack you're working with. 
 

Edge-to-cloud communication protocols: 

Edge-to-cloud communication protocols are crucial for connecting devices at the 

edge of a network (like sensors and IoT devices) with cloud-based services and 

applications. These protocols facilitate the transfer of data, commands, and 

information between the edge devices and cloud platforms. Here are some 

commonly used edge-to-cloud communication protocols: 



1. MQTT (Message Queuing Telemetry Transport): MQTT is a lightweight 

publish-subscribe messaging protocol designed for IoT applications. It is well-

suited for scenarios where devices need to send data to the cloud or receive 

commands from the cloud. MQTT uses a broker-based architecture, allowing 

devices to publish data to topics and subscribe to topics to receive data. 

2. CoAP (Constrained Application Protocol): CoAP is another lightweight 

protocol designed for constrained devices and networks. It is specifically 

optimized for resource-constrained environments and supports both request-

response and publish-subscribe models. CoAP is often used in scenarios 

where devices need to communicate over low-power networks. 

3. HTTP/HTTPS (Hypertext Transfer Protocol/Secure): While not specifically 

designed for IoT, HTTP and HTTPS are widely used for communication 

between edge devices and the cloud. HTTP can be used for sending RESTful 

API requests and receiving responses, making it suitable for applications that 

require cloud-based data retrieval and control. 

4. AMQP (Advanced Message Queuing Protocol): AMQP is a versatile 

protocol that provides a standardized way for different applications to 

communicate using a message-oriented paradigm. It supports both publish-

subscribe and queuing models, making it suitable for various edge-to-cloud 

communication scenarios. 

5. DDS (Data Distribution Service): DDS is a protocol used in real-time and 

mission-critical systems where reliable and high-performance data exchange 

is essential. It supports data-centric publish-subscribe communication and is 

often used in applications such as industrial automation and aerospace. 

6. WebSocket: WebSocket is a communication protocol that provides full-

duplex, bidirectional communication channels over a single TCP connection. 

It's particularly useful for applications requiring real-time data updates or 

interactive communication between edge devices and the cloud. 

7. AMT (Asynchronous Messaging Transport): AMT is a protocol designed to 

efficiently transport large volumes of data between edge devices and cloud 

services. It's optimized for handling streaming data and is suitable for 

applications such as multimedia streaming and remote monitoring. 

8. DDS (Data Distribution Service): DDS is a protocol that focuses on real-time 

data distribution and communication in distributed systems. It's commonly 

used in scenarios where high-performance and low-latency communication 

are critical, such as industrial automation and military applications. 

9. Sigfox and LoRaWAN: These are proprietary low-power, wide-area (LPWA) 

network protocols designed for IoT devices with long-range connectivity. They 

are often used for edge-to-cloud communication in applications requiring 

extended battery life and communication over large areas. 

10. Bluetooth and BLE (Bluetooth Low Energy): For short-range 

communication between edge devices and cloud gateways, Bluetooth and BLE 



are commonly used. They are suitable for applications like home automation, 

wearables, and proximity-based interactions. 

When selecting an edge-to-cloud communication protocol, consider factors such as 

data volume, latency requirements, power constraints, security, and compatibility 

with your cloud platform. Your choice will depend on the specific needs of your IoT 

project and the technology stack you're working with. 
 

MQTT (Message Queuing Telemetry Transport): 

MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol 

designed for efficient communication between devices in IoT (Internet of Things) and 

other resource-constrained environments. It follows a publish-subscribe messaging 

pattern, allowing devices to exchange data and commands via a central message 

broker. MQTT is well-suited for scenarios where low bandwidth, low power 

consumption, and reliable communication are important. 

Key features of MQTT include: 

1. Publish-Subscribe Model: In MQTT, devices communicate through topics. 

Publishers send messages to specific topics, and subscribers receive messages 

from topics they are interested in. This decoupled approach allows devices to 

communicate without knowing each other's identities. 

2. Quality of Service (QoS) Levels: MQTT supports different levels of message 

delivery assurance: 

• QoS 0: The message is delivered at most once, without any 

acknowledgment. This level is suitable for scenarios where message 

loss is acceptable. 

• QoS 1: The message is delivered at least once, and the sender waits for 

an acknowledgment (PUBACK) from the receiver. If no 

acknowledgment is received, the message is resent. 

• QoS 2: The message is delivered exactly once by using a four-step 

handshake process. This ensures the message is received only once. 

3. Retained Messages: A retained message is a message that is stored on the 

broker and sent to new subscribers immediately upon subscribing. This is 

useful for sending status updates or configuration information to new devices 

joining the network. 

4. Last Will and Testament (LWT): Clients can specify a "last will" message that 

the broker will send if the client unexpectedly disconnects. This can be used to 

notify other devices of a client's offline status. 

5. Low Bandwidth Usage: MQTT messages have a small overhead, making it 

efficient for low-bandwidth and high-latency networks. 



6. Keep-Alive Mechanism: Clients periodically send "ping" messages to the 

broker to keep the connection alive. If the broker doesn't receive a ping within 

a specified time, it can assume the client has disconnected. 

7. Security: MQTT supports various authentication and security mechanisms, 

including username/password authentication, SSL/TLS encryption, and more. 

8. Wildcards: MQTT allows the use of wildcards to subscribe to multiple topics 

with a single subscription. The two wildcards are '+' (matches a single level of 

a topic) and '#' (matches multiple levels). 

To use MQTT, you typically need three components: 

• Client: The device or application that publishes or subscribes to MQTT 

messages. 

• Broker: The central server that acts as an intermediary between clients. It 

receives messages from publishers and forwards them to subscribers. 

• Topic: A string identifier that specifies the category of the message. Clients 

can publish messages to topics and subscribe to topics to receive messages. 

Overall, MQTT's lightweight design and support for various QoS levels make it a 

popular choice for IoT applications, home automation, real-time monitoring, and 

other scenarios where efficient and reliable communication between devices is 

crucial. 
 

 

MQTT (Message Queuing Telemetry Transport) follows a client-server or broker-

based architecture, where clients (devices or applications) communicate with each 

other through a central MQTT broker. Here are the key components and details of 

MQTT architecture: 

1. Client: MQTT clients are the endpoints that send or receive messages. Clients 

can be devices, sensors, applications, or any system capable of MQTT 

communication. Clients can be categorized into two types: publishers and 

subscribers. 

• Publisher: A publisher is an MQTT client that sends messages to the 

MQTT broker. Publishers specify a topic for each message they publish. 

Topics are used to categorize messages. 

• Subscriber: A subscriber is an MQTT client that receives messages 

from the MQTT broker. Subscribers specify the topics they are 

interested in and subscribe to those topics. When a message is 

published to a subscribed topic, the broker forwards it to all interested 

subscribers. 



2. Broker: The MQTT broker is the central server that acts as an intermediary 

between publishers and subscribers. It is responsible for routing messages 

from publishers to subscribers based on topic subscriptions. The broker 

manages the MQTT communication and ensures the proper delivery of 

messages. Some key functions of the MQTT broker include: 

• Topic Routing: The broker keeps track of which clients are subscribed 

to which topics. When a message is published to a topic, the broker 

forwards it to all clients that have subscribed to that topic. 

• Quality of Service (QoS) Handling: The broker handles the QoS levels 

specified by clients during message publication and ensures that 

messages are delivered according to the desired QoS level. 

• Retained Messages: The broker can retain the last message sent on a 

specific topic, allowing new subscribers to receive the last known value 

for that topic. 

• Last Will and Testament (LWT): The broker manages LWT messages, 

which are sent to a specified topic if a client disconnects unexpectedly. 

• Security: Brokers can enforce security mechanisms such as 

authentication, authorization, and encryption when clients connect to 

them. Some brokers support TLS/SSL for secure communication. 

• Session Management: MQTT brokers can manage client sessions, 

including keeping track of active client connections and handling client 

reconnections. 

3. Topic: Topics are used to categorize and organize messages in MQTT. They 

are hierarchical in nature and allow for structured messaging. Topics are 

represented as strings, and clients can subscribe to and publish to specific 

topics. For example, a topic hierarchy might look like "home/living-

room/temperature." 

4. Quality of Service (QoS): MQTT supports three levels of QoS, which define 

the message delivery guarantees between publishers and subscribers: 

• QoS 0 (At Most Once): Messages are delivered at most once, with no 

acknowledgment or guarantee of delivery. This is the fastest but least 

reliable QoS level. 

• QoS 1 (At Least Once): Messages are guaranteed to be delivered at 

least once, but duplicates may occur. This level ensures message 

reliability at the cost of potential duplicates. 

• QoS 2 (Exactly Once): Messages are guaranteed to be delivered 

exactly once. This level ensures both reliability and no duplicates but 

involves the most communication overhead. 

In summary, MQTT architecture consists of clients (publishers and subscribers), an 

MQTT broker, topics for message categorization, and QoS levels for message delivery 

guarantees. This architecture is designed to be lightweight, efficient, and well-suited 

for IoT and other applications where efficient messaging is crucial. 



MQTT (Message Queuing Telemetry Transport) follows a specific set of state 

transitions to manage the communication between MQTT clients (publishers and 

subscribers) and the MQTT broker. Here are the key MQTT state transitions: 

1. Disconnected State (Initial State): 

• Description: When an MQTT client is not connected to the broker, it is 

in the Disconnected state. 

• Transitions: The client can transition to the Connecting state to 

establish a connection with the broker. 

2. Connecting State: 

• Description: In this state, the MQTT client initiates a connection to the 

MQTT broker. 

• Transitions: 

• If the connection attempt is successful, the client transitions to 

the Connected state. 

• If the connection attempt fails, the client can retry or may 

transition back to the Disconnected state. 

3. Connected State: 

• Description: Once the MQTT client successfully connects to the broker, 

it enters the Connected state. In this state, the client can perform 

various MQTT operations, such as publishing and subscribing to topics. 

• Transitions: 

• The client can initiate a disconnection, which transitions it back 

to the Disconnected state. 

• If the connection is unexpectedly terminated (e.g., due to a 

network issue or broker disconnection), the client can transition 

to the Disconnected state. 

4. Publishing State (Optional): 

• Description: When an MQTT client wants to publish a message, it 

enters the Publishing state temporarily to send the message to the 

broker. 

• Transitions: After publishing the message, the client returns to the 

Connected state. 

5. Subscribing State (Optional): 

• Description: When an MQTT client subscribes to one or more topics, it 

may enter a Subscribing state temporarily to send the subscription 

request to the broker. 

• Transitions: After subscribing to the topics, the client returns to the 

Connected state. 

6. Disconnected (Clean Disconnect) State: 

• Description: When an MQTT client decides to disconnect gracefully, it 

transitions to the Disconnected state. 



• Transitions: The client can initiate a new connection by moving to the 

Connecting state or remain in the Disconnected state until it decides to 

reconnect. 

7. Disconnected (Ungraceful Disconnect) State: 

• Description: If the connection is unexpectedly terminated (e.g., due to 

network issues), the MQTT client transitions to the Disconnected state. 

• Transitions: The client typically initiates a reconnection attempt by 

moving to the Connecting state, allowing it to reestablish 

communication with the broker. 

These state transitions illustrate how MQTT clients manage their connection states 

and handle reconnections when necessary. MQTT brokers also play a role in 

managing client sessions and ensuring the appropriate handling of messages and 

subscriptions during client disconnections and reconnections. Additionally, MQTT 

supports features like the "Last Will and Testament" (LWT) to handle unexpected 

client disconnects gracefully. 
 

 

MQTT (Message Queuing Telemetry Transport) uses a specific packet structure for 

communication between clients (publishers and subscribers) and the MQTT broker. 

MQTT packets are used to convey various types of information, including connection 

requests, published messages, subscriptions, acknowledgments, and more. Here is an 

overview of the MQTT packet structure: 

1. Fixed Header: The fixed header appears at the beginning of every MQTT 

packet and contains essential information about the packet type, flags, and 

remaining length. It consists of the following components: 

• Packet Type: Indicates the type of packet, such as CONNECT, PUBLISH, 

SUBSCRIBE, etc. 

• Flags: Various flags that provide additional control over the packet 

behavior, depending on the packet type. 

• Remaining Length: Specifies the length of the variable header and 

payload. 

2. Variable Header: The structure and content of the variable header depend on 

the specific packet type. It may include information such as the protocol name 

and version, message identifier, topic name, QoS level, and more. 

3. Payload: The payload carries the actual data associated with the MQTT 

packet. The content and structure of the payload vary based on the packet 

type. For example: 

• CONNECT Packet: The payload contains information about the client's 

identifier, clean session flag, username, password, and more. 



• PUBLISH Packet: The payload holds the message topic, message body, 

QoS level, and retain flag. 

• SUBSCRIBE Packet: The payload specifies the list of topics and their 

corresponding QoS levels that the client wants to subscribe to. 

4. Checksum/CRC (Cyclic Redundancy Check): Some MQTT packets may 

include a checksum or CRC to ensure data integrity. This is typically seen in 

MQTT over WebSocket implementations. 

Here's a breakdown of the structure of a few common MQTT packets: 

• CONNECT Packet: This packet is used to establish a connection between the 

client and the broker. 

• Fixed Header: Packet Type (CONNECT), Flags, Remaining Length 

• Variable Header: Protocol Name, Protocol Level, Connect Flags, Keep 

Alive, Client Identifier, Will Topic, Will Message, Username, Password 

• Payload: None 

• PUBLISH Packet: This packet is used to publish a message to a specific topic. 

• Fixed Header: Packet Type (PUBLISH), Flags (QoS, Retain), Remaining 

Length 

• Variable Header: Topic Name, Message Identifier (if QoS > 0) 

• Payload: Message Data 

• SUBSCRIBE Packet: This packet is used by the client to subscribe to one or 

more topics. 

• Fixed Header: Packet Type (SUBSCRIBE), Flags, Remaining Length 

• Variable Header: Message Identifier 

• Payload: List of Topic Filters and QoS Levels 

• SUBACK Packet: This packet is sent by the broker to acknowledge the 

SUBSCRIBE request. 

• Fixed Header: Packet Type (SUBACK), Flags, Remaining Length 

• Variable Header: Message Identifier 

• Payload: List of QoS Levels (acknowledging the requested QoS for 

each subscribed topic) 

• PUBACK Packet: This packet is used to acknowledge the receipt of a PUBLISH 

packet with QoS level 1. 

• Fixed Header: Packet Type (PUBACK), Flags, Remaining Length 

• Variable Header: Message Identifier 

• Payload: None 

• DISCONNECT Packet: This packet is used to disconnect from the broker. 

• Fixed Header: Packet Type (DISCONNECT), Flags, Remaining Length 

• Variable Header: None 

• Payload: None 



The specific packet structure may vary slightly depending on the MQTT version being 

used (e.g., MQTT v3.1.1 or MQTT v5.0) and the presence of optional fields like user 

authentication and will messages. The fixed header and variable header together 

provide the necessary information for processing and routing MQTT packets 

correctly. 
 

 

MQTT (Message Queuing Telemetry Transport) is a lightweight and efficient 

messaging protocol often used in IoT (Internet of Things) and other scenarios where 

low overhead and reliable communication are essential. MQTT packets are the 

fundamental units of communication in MQTT, and they have a specific structure. 

MQTT uses a publish-subscribe model, where clients can publish messages to topics, 

and other clients can subscribe to topics to receive those messages. 

MQTT packets can be classified into four types: 

1. Fixed Header: This is a mandatory part of every MQTT packet and contains 

information about the packet type, the QoS (Quality of Service) level, whether 

the packet is a duplicate, and the length of the remaining variable header and 

payload. 

The fixed header consists of the following fields: 

• Packet Type: A 4-bit field that specifies the type of packet (e.g., 

CONNECT, PUBLISH, SUBSCRIBE, etc.). 

• Flags: Various flags specific to each packet type. 

• Remaining Length: A variable length field (1-4 bytes) encoding the 

length of the variable header and payload. 

2. Variable Header: This part of the packet structure varies in content and 

length depending on the packet type. It typically contains information such as 

protocol version, client ID, topic name, message ID, etc. 

3. Payload: The payload is optional and carries the actual data of the message, 

such as the message text in a PUBLISH packet. 

4. Checksum (Optional): Depending on the packet type and QoS level, an 

optional checksum (CRC) may be present to ensure message integrity. 

Here's a more detailed breakdown of MQTT packet structure for some common 

packet types: 

• CONNECT: This is the initial packet sent by the client to establish a connection 

with the MQTT broker. The variable header contains information like the 

protocol name and version, the client's connection parameters, and the client 

ID. 



• PUBLISH: This packet is used to send a message from a publisher to 

subscribers. The variable header contains the topic name, message ID 

(optional), QoS level, and retain flag. The payload carries the actual message. 

• SUBSCRIBE: Sent by the client to subscribe to one or more topics. The 

variable header contains a message ID, and the payload contains a list of topic 

filter and QoS level pairs that the client wants to subscribe to. 

• SUBACK: Sent by the broker to acknowledge the SUBSCRIBE request. The 

variable header contains the message ID, and the payload contains a list of 

granted QoS levels for each requested subscription. 

• PUBACK, PUBREC, PUBREL, PUBCOMP: These packets are used in the QoS 

level 1 and 2 message delivery flows, providing acknowledgment and message 

flow control. 

• UNSUBSCRIBE: Sent by the client to unsubscribe from one or more topics. 

The variable header contains a message ID, and the payload contains a list of 

topic filters to unsubscribe from. 

• UNSUBACK: Sent by the broker to acknowledge the UNSUBSCRIBE request. 

The variable header contains the message ID. 

• PINGREQ: Sent by the client to the broker as a keep-alive mechanism to 

maintain the connection. 

• PINGRESP: Sent by the broker in response to a PINGREQ to acknowledge the 

client's presence. 

These are the basic MQTT packet types and their structures. The specific format and 

contents of variable headers and payloads can vary depending on the packet type 

and options used in the MQTT protocol version being used (e.g., MQTT 3.1.1 or 

MQTT 5.0). 
 



UNIT- V: EDGE COMPUTING WITH RASBERRYPi 
Industrial IoT

IoT leverages connected devices, sensors, data analytics, and real-time communication 
to transform traditional industries and improve operational efficiency, productivity, and 
decision-making. Here are key aspects and components of Industrial IoT:
1.Connected Devices and Sensors:
• IIoT relies on a network of sensors, actuators, and connected devices that collect 

data from various points in an industrial environment. 
• These devices can include temperature sensors, pressure sensors, RFID tags, 

cameras, and more.

2. Data Collection and Monitoring:
•IIoT systems gather data in real-time from industrial assets and processes. This data 
includes information on equipment status, performance metrics, environmental 
conditions, and more.
•Industrial IoT platforms use protocols like MQTT and CoAP to efficiently transmit data 
to centralized systems or the cloud.



3. Cloud Computing and Edge Computing:
1. IIoT systems often employ cloud computing for data storage, analysis, and 

processing. Cloud platforms provide scalability and accessibility.
2. Edge computing is used to perform real-time processing and decision-making closer 

to the data source, reducing latency and enabling quick responses in critical 
applications

4. Data Analytics and Machine Learning:
1. Advanced analytics and machine learning algorithms are applied to IIoT data to gain 

insights, detect anomalies, predict failures, and optimize processes.
2. Predictive maintenance is a common use case, where machine learning models 

help predict when industrial equipment is likely to fail, allowing for proactive 
maintenance.

5. Security and Cybersecurity:
1. Security is a paramount concern in IIoT, as industrial systems are critical and 

vulnerable to cyberattacks.
2. Security measures include data encryption, access controls, intrusion detection 

systems, and secure communication protocols.



6. Interoperability and Standards:
1. Interoperability is crucial in IIoT to ensure that devices and systems from different 

manufacturers can communicate and work together seamlessly.
2. Standards like OPC UA (Unified Architecture) and MQTT help facilitate 

interoperability.
7. Remote Monitoring and Control:

IIoT enables remote monitoring and control of industrial processes and equipment, 
allowing operators to make adjustments, diagnose issues, and optimize operations from 
anywhere.

8. Energy Efficiency:
IIoT can help improve energy efficiency in industrial settings by monitoring energy 
consumption, optimizing machine operation, and identifying areas for improvement.

9. Supply Chain and Inventory Management:
IIoT can be used for tracking inventory, managing the supply chain, and improving 
logistics processes in manufacturing and distribution.

10. Predictive Analytics:
Predictive analytics in IIoT allows businesses to anticipate demand, optimize production 
schedules, and reduce waste by making data-driven decisions.



11. Quality Control:
1.IIoT sensors and cameras can be used for real-time quality control in 

manufacturing processes, ensuring that products meet quality standards.
12. Safety and Compliance:

1.IIoT technologies can help improve workplace safety by monitoring 
conditions and providing alerts in hazardous environments.

2.Compliance with industry regulations and standards is also facilitated 
through IIoT data collection and reporting.

Industrial IoT has the potential to transform a wide range of industries, 
including manufacturing, energy, agriculture, healthcare, and 
transportation, by making processes more efficient, cost-effective, and 
data-driven. 



Commercial IoT (Internet of Things) refers to the deployment of IoT 
technologies and solutions for commercial and business purposes. 
It involves the use of connected devices, sensors, data analytics, and 
automation to improve operational efficiency, reduce costs, enhance customer 
experiences, and drive revenue growth in various commercial sectors. 
Here are some key aspects and applications of commercial IoT:

Smart Buildings and Facilities Management:
•Commercial IoT is used to create smart buildings and facilities. 
•IoT sensors monitor and control various aspects of building operations, 
including lighting, security, and energy consumption.
•Smart building systems can optimize energy usage, improve occupant 
comfort, and reduce maintenance costs.



2. Retail and Customer Engagement:
1. In the retail sector, IoT enables retailers to gather data on customer behavior 

and preferences. This data can be used for personalized marketing, inventory 
management, and optimizing store layouts.

2.Beacons and RFID technology are often used for in-store customer 
engagement and tracking.

3. Supply Chain Management:
1.Commercial IoT is employed to monitor and track goods throughout the supply 

chain. RFID tags, GPS trackers, and sensors provide real-time visibility into the 
movement and condition of products.

2.This helps improve inventory management, reduce loss, and enhance the 
accuracy of delivery and logistics.

4. Fleet Management:
•IoT solutions are used in commercial fleets to monitor vehicle location, driver 
behavior, fuel consumption, and maintenance needs.
•Fleet management systems can optimize routes, reduce fuel costs, and enhance 
driver safety.



5. Manufacturing and Industrial Automation:
1.IoT technologies are integral to Industry 4.0, enabling smart factories and 

industrial automation.
2.Sensors and connected devices collect data from machines and 

processes, facilitating predictive maintenance, quality control, and 
production optimization.

6. Healthcare and Telemedicine:
1.In the healthcare sector, commercial IoT is used for remote patient 

monitoring, wearable health devices, and telemedicine.
2.IoT devices help healthcare providers collect patient data, make 

diagnoses, and improve patient outcomes.
7. Agriculture:

1.Precision agriculture relies on IoT sensors and automation to monitor soil 
conditions, weather, crop health, and equipment performance.

2.IoT in agriculture improves crop yields, reduces resource waste, and 
promotes sustainable farming practices.



8. Asset Tracking and Management:
1.Many businesses use IoT to track and manage valuable assets, such as 

equipment, vehicles, and tools.
2.Asset tracking solutions help prevent theft, loss, and improve asset 

utilization.
9. Environmental Monitoring:

1.Commercial IoT is used for environmental monitoring, including air 
quality, water quality, and pollution control.

2.Real-time data from sensors helps businesses comply with regulations 
and mitigate environmental risks.

10. Security and Access Control:
1.IoT-based security systems are widely used for access control, 

surveillance, and alarm systems in commercial properties.
2.These systems enhance security and provide remote monitoring 

capabilities.



11.Energy Management:
IoT-based energy management solutions help commercial buildings and 
industries optimize energy consumption, reduce costs, and lower carbon 
footprints.

12.Financial Services:
In the financial sector, IoT is used to monitor and track assets, automate 
processes, and enhance customer services through smart banking and 
payment solutions.

Commercial IoT solutions are diverse and can be tailored to meet the specific 
needs of different industries and businesses

They often involve the integration of various IoT devices, cloud computing, 
data analytics, and machine learning to drive efficiency and innovation in 
commercial operations.



Industrial and Commercial Edge Computing

When it comes to edge computing in industrial and commercial settings, 
Raspberry Pi can be a valuable tool with its features tailored to meet the 
requirements of these environments. 

1. Real-Time Data Processing: Raspberry Pi's processing power and low 
latency make it suitable for real-time data processing in industrial 
automation and control systems. 

      It can handle data from sensors, analyze it locally, and take appropriate
     actions in real-time.
2. Industrial Protocols Support: Raspberry Pi can be equipped with additional 
hardware or software to support industrial communication protocols such as 
Modbus, Profibus, or OPC UA.
 This allows seamless integration with industrial equipment and machines.



3. IoT Device Integration: Raspberry Pi's GPIO pins and support for various 
communication protocols enable easy integration with a wide array of IoT 
devices commonly used in industrial and commercial applications. 
It can serve as a gateway for managing and monitoring IoT devices at the 
edge.

4. Edge AI and Machine Learning: Raspberry Pi can run lightweight machine 
learning models and AI algorithms at the edge. 
This is valuable in applications like predictive maintenance, quality control, 
and anomaly detection, enhancing operational efficiency in industries.

5. Remote Monitoring and Control: Raspberry Pi, combined with suitable 
software and connectivity options, enables remote monitoring and control 
of industrial processes and equipment. 
This is crucial for efficient operations and timely decision-making.



6. Secure Data Processing: Security features and capabilities of Raspberry Pi 
can be enhanced using encryption, secure boot, and access control 
mechanisms to ensure data security in sensitive industrial and commercial 
environments.

7. Custom Industrial Applications: Developers can create custom applications 
tailored to specific industrial and commercial use cases, leveraging the 
flexibility and customization options of Raspberry Pi.

8. Edge Data Storage and Retrieval: Raspberry Pi can store and manage data 
at the edge, reducing the need for constant data transfers to centralized 
servers.
This is particularly useful for applications with intermittent or limited 
connectivity.



9. Scalability: Raspberry Pi solutions can be easily scaled by deploying multiple 
devices across a facility or network, providing a scalable edge computing 
infrastructure.

10.Integration with Existing Systems: Raspberry Pi can integrate with existing 
legacy systems and equipment in industrial and commercial environments, 
extending the lifespan and functionality of these systems.

11. Diagnostics and Monitoring: Raspberry Pi can be utilized for monitoring the 
health and performance of equipment, predicting failures, and scheduling 
maintenance, thus reducing downtime and increasing efficiency.

Raspberry Pi's features make it a versatile and cost-effective solution for 
implementing edge computing in industrial and commercial domains, enhancing 
operational efficiency, data processing capabilities, and enabling innovative 
applications in these sectors.



Edge Computing & Solutions

Edge computing involves processing and analyzing data closer to its source, 
typically on devices located at the "edge" of a network, rather than sending all 
data to centralized data centers. 
This approach offers benefits like reduced latency, improved data privacy, 
bandwidth savings, and the ability to operate in low-connectivity environments. 

Here are some key concepts and solutions related to edge computing:

1.Edge Devices: Edge devices are the physical devices (e.g., sensors, IoT devices, 
industrial controllers) responsible for collecting data at the source. These devices 
have computing capabilities to process data locally.
2.Edge Computing Infrastructure: This includes the hardware and software that 
facilitate data processing and analysis at the edge. It may involve edge servers, 
gateways, or specialized edge computing hardware.



3. Edge Analytics: Analytical processes performed at the edge to extract 
meaningful insights from data in real-time. 
This can involve data filtering, aggregation, machine learning inference, and 
other analytics tasks.

4. Edge AI (Artificial Intelligence): Running AI algorithms and machine 
learning models at the edge devices for immediate decision-making and 
reduced reliance on centralized cloud AI. 
This is crucial for applications like image recognition, predictive 
maintenance, and natural language processing.

5. Edge Data Storage: Local storage of data at the edge to support 
immediate access and reduce the need for constant communication with 
central data centers. It's important for applications that require quick data 
retrieval.



6.Edge-to-Cloud Integration: Efficiently managing data flow and 
processing between edge devices and central cloud infrastructure. 
Some data may be processed at the edge, while relevant information is 
sent to the cloud for further analysis or long-term storage.

7.Edge Security: Implementing security measures to protect data at 
the edge, which can include encryption, access controls, secure boot 
processes, and other cybersecurity practices to ensure data integrity 
and confidentiality.

8.Edge Networking: Networking solutions and protocols optimized for 
edge environments, ensuring reliable communication between edge 
devices and centralized systems, especially in scenarios with 
intermittent connectivity.



9.Edge Application Development: Creating software applications 
specifically designed to run on edge devices, utilizing the processing 
power and capabilities available at the edge for improved performance 
and efficiency.

10.Fog Computing: A related concept to edge computing, fog 
computing extends the capabilities of edge devices by providing 
additional computing resources and services in the local network.

11.Use Cases: Edge computing finds applications in various domains 
including industrial automation, healthcare (e.g., remote patient 
monitoring), retail (e.g., smart shelves, inventory management), 
transportation (e.g., autonomous vehicles), smart homes, agriculture, 
and more.



12.Edge Management and Orchestration: Tools and platforms that 
assist in managing and orchestrating edge devices, applications, and 
resources, ensuring optimal performance, security, and scalability.

Effective implementation of edge computing solutions requires careful 
consideration of the specific use case, the nature of the data, the 
processing requirements, and the connectivity available at the edge. 

Integration of edge computing with centralized cloud services creates 
a powerful hybrid computing environment that can address a wide 
range of business and technological needs.
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