
408 Introduc on to Embedded Systems

A thread cannot live independently; it lives within the

process.

A process contains at least one thread.

There can be multiple threads in a process. The fi rst thread

(main thread) calls the main function and occupies the start

of the stack memory of the process.

Threads within a process share the code, data and heap

memory. Each thread holds separate memory area for stack

(shares the total stack memory of the process).

Threads are very inexpensive to create Processes are very expensive to create. Involves many OS

overhead.

Context switching is inexpensive and fast Context switching is complex and involves lot of OS over-

head and is comparatively slower.

If a thread expires, its stack is reclaimed by the process. If a process dies, the resources allocated to it are reclaimed

by the OS and all the associated threads of the process

also dies.

10.4 MULTIPROCESSING AND MULTITASKING

The terms multiprocessing and multitasking are a little confusing and sounds alike.

In the operating system context multiprocessing describes the ability to execute

multiple processes simultaneously. Systems which are capable of performing

multiprocessing, are known as multiprocessor systems. Multiprocessor systems

possess multiple CPUs and can execute multiple processes simultaneously.

The ability of the operating system to have multiple programs in memory,

which are ready for execution, is referred as multiprogramming. In a uniprocessor system, it is not possible

to execute multiple processes simultaneously. However, it is possible for a uniprocessor system to achieve

some degree of pseudo parallelism in the execution of multiple processes by switching the execution among

different processes. The ability of an operating system to hold multiple processes in memory and switch

the processor (CPU) from executing one process to another process is known as multitasking. Multitasking

creates the illusion of multiple tasks executing in parallel. Multitasking involves the switching of CPU from

executing one task to another. In an earlier section ‘The Structure of a Process’ of this chapter, we learned

that a Process is identical to the physical processor in the sense it has own register set which mirrors the

CPU registers, stack and Program Counter (PC). Hence, a ‘process’ is considered as a ‘Virtual processor’,

awaiting its turn to have its properties switched into the physical processor. In a multitasking environment,

when task/process switching happens, the virtual processor (task/process) gets its properties converted into

that of the physical processor. The switching of the virtual processor to physical processor is controlled by the

scheduler of the OS kernel. Whenever a CPU switching happens, the current context of execution should be

saved to retrieve it at a later point of time when the CPU executes the process, which is interrupted currently

due to execution switching. The context saving and retrieval is essential for resuming a process exactly from

the point where it was interrupted due to CPU switching. The act of switching CPU among the processes or

changing the current execution context is known as ‘Context switching’. The act of saving the current context

which contains the context details (Register details, memory details, system resource usage details, execution

details, etc.) for the currently running process at the time of CPU switching is known as ‘ Context saving’.

The process of retrieving the saved context details for a process, which is going to be executed due to CPU

switching, is known as ‘ Context retrieval’. Multitasking involves ‘ Context switching’ (Fig. 10.11), ‘Context

saving’ and ‘Context retrieval’.

Toss Juggling The skilful object manipulation game is a classic real world example for the multitasking

illusion. The juggler uses a number of objects (balls, rings, etc.) and throws them up and catches them. At

LO 4 Understand
the difference
between
multiprocessing
and multitasking

 Real-Time Opera ng System (RTOS) based Embedded System Design 409

any point of time, he throws only one ball and catches only one per hand. However, the speed at which he is

switching the balls for throwing and catching creates the illusion, he is throwing and catching multiple balls

or using more than two hands ☺ simultaneously, to the spectators.

Time

P
ro

ce
ss

es

Idle

Running

Process 1

Process 2

E
x

ec
u

ti
o

n
 s

w
it

ch
es

 t
o

 P
r
o

c
e
s
s
 2

(I
n

te
rr

u
p

t
o

r
S

y
st

em
 C

al
l)

1
.
S

av
e

C
u

rr
en

t
co

n
te

x
t

in
to

 P
C

B
0

2
.

P
er

fo
rm

 o
th

er
 O

S
 o

p
er

at
io

n
s

re
la

te
d

 t
o

‘C
o

n
te

x
t

S
w

it
ch

in
g

’
3

.
R

el
o

ad
 C

o
n

te
x

t
fo

r
P

ro
ce

ss
 2

 f
ro

m
 P

C
B

1

E
x

ec
u

ti
o

n
 s

w
it

ch
es

 t
o

 P
r
o

c
e
s
s
 1

(I
n

te
rr

u
p

t
o

r
S

y
st

em
 C

al
l)

1
.
S

av
e

C
u

rr
en

t
co

n
te

x
t

in
to

 P
C

B
1

2
.

P
er

fo
rm

 o
th

er
 O

S
 o

p
er

at
io

n
s

re
la

te
d

 t
o

‘C
o

n
te

x
t

S
w

it
ch

in
g

’
3

.
R

el
o

ad
 C

o
n

te
x

t
fo

r
P

ro
ce

ss
 1

 f
ro

m
 P

C
B

0

Delay in execution of

Process 2 happened

due to ‘Context

Switching’

Delay in execution of

Process 1 happened

due to ‘Context

Switching’

RunningIdleWaits in ‘Ready’ QueueRunning

RunningIdle Waits in ‘Ready’ Queue

Fig. 10.11 Context switching

10.4.1 Types of Multitasking

As we discussed earlier, multitasking involves the switching of execution among multiple tasks. Depending

on how the switching act is implemented, multitasking can be classifi ed into different types. The following

section describes the various types of multitasking existing in the Operating System’s context.

10.4.1.1  Co-opera ve Mul tasking
Co-operative multitasking is the most primitive form of multitasking in which a task/process gets a chance to

execute only when the currently executing task/process voluntarily relinquishes the CPU. In this method, any

task/process can hold the CPU as much time as it wants. Since this type of implementation involves the mercy

of the tasks each other for getting the CPU time for execution, it is known as co-operative multitasking. If the

currently executing task is non-cooperative, the other tasks may have to wait for a long time to get the CPU.

10.4.1.2 Preemp ve Mul tasking
 Preemptive multitasking ensures that every task/process gets a chance to execute. When and how much time

a process gets is dependent on the implementation of the preemptive scheduling. As the name indicates, in

preemptive multitasking, the currently running task/process is preempted to give a chance to other tasks/

process to execute. The preemption of task may be based on time slots or task/process priority.

10.4.1.3  Non-preemp ve Mul tasking
In non-preemptive multitasking, the process/task, which is currently given the CPU time, is allowed to

execute until it terminates (enters the ‘Completed’ state) or enters the ‘Blocked/Wait’ state, waiting for an I/O

410 Introduc on to Embedded Systems

or system resource. The co-operative and non-preemptive multitasking differs in their behaviour when they

are in the ‘Blocked/Wait’ state. In co-operative multitasking, the currently executing process/task need not

relinquish the CPU when it enters the ‘Blocked/Wait’ state, waiting for an I/O, or a shared resource access or

an event to occur whereas in non-preemptive multitasking the currently executing task relinquishes the CPU

when it waits for an I/O or system resource or an event to occur.

10.5 TASK SCHEDULING

As we already discussed, multitasking involves the execution switching among

the different tasks. There should be some mechanism in place to share the CPU

among the different tasks and to decide which process/task is to be executed at a

given point of time. Determining which task/process is to be executed at a given

point of time is known as task/process scheduling. Task scheduling forms the

basis of multitasking. Scheduling policies forms the guidelines for determining

which task is to be executed when. The scheduling policies are implemented in an

algorithm and it is run by the kernel as a service. The kernel service/application,

which implements the scheduling algorithm, is known as ‘Scheduler’. The process scheduling decision may

take place when a process switches its state to

 1. ‘Ready’ state from ‘Running’ state

 2. ‘Blocked/Wait’ state from ‘Running’ state

 3. ‘Ready’ state from ‘Blocked/Wait’ state

 4. ‘Completed’ state

A process switches to ‘Ready’ state from the ‘Running’ state when it is preempted. Hence, the type of

scheduling in scenario 1 is pre-emptive. When a high priority process in the ‘Blocked/Wait’ state completes

its I/O and switches to the ‘Ready’ state, the scheduler picks it for execution if the scheduling policy used is

priority based preemptive. This is indicated by scenario 3. In preemptive/non-preemptive multitasking, the

process relinquishes the CPU when it enters the ‘Blocked/Wait’ state or the ‘Completed’ state and switching

of the CPU happens at this stage. Scheduling under scenario 2 can be either preemptive or non-preemptive.

Scheduling under scenario 4 can be preemptive, non-preemptive or co-operative.

The selection of a scheduling criterion/algorithm should consider the following factors:

 CPU Utilisation: The scheduling algorithm should always make the CPU utilisation high. CPU utilisation is

a direct measure of how much percentage of the CPU is being utilised.

 Throughput: This gives an indication of the number of processes executed per unit of time. The throughput

for a good scheduler should always be higher.

 Turnaround Time: It is the amount of time taken by a process for completing its execution. It includes the

time spent by the process for waiting for the main memory, time spent in the ready queue, time spent on

completing the I/O operations, and the time spent in execution. The turnaround time should be a minimal for

a good scheduling algorithm.

 Waiting Time: It is the amount of time spent by a process in the ‘Ready’ queue waiting to get the CPU time

for execution. The waiting time should be minimal for a good scheduling algorithm.

 Response Time: It is the time elapsed between the submission of a process and the fi rst response. For a good

scheduling algorithm, the response time should be as least as possible.

To summarise, a good scheduling algorithm has high CPU utilisation, minimum Turn Around Time

(TAT), maximum throughput and least response time.

LO 5 Describe
the FCFS/FIFO,
LCFS/LIFO, SJF
and priority based
task/process
scheduling

 Real-Time Opera ng System (RTOS) based Embedded System Design 411

The Operating System maintains various queues† in connection with the CPU scheduling, and a process

passes through these queues during the course of its admittance to execution completion.

The various queues maintained by OS in association with CPU scheduling are:

 Job Queue: Job queue contains all the processes in the system

 Ready Queue: Contains all the processes, which are ready for execution and waiting for CPU to get their

turn for execution. The Ready queue is empty when there is no process ready for running.

 Device Queue: Contains the set of processes, which are waiting for an I/O device.

A process migrates through all these queues during its journey from ‘Admitted’ to ‘Completed’ stage. The

following diagrammatic representation (Fig. 10.12) illustrates the transition of a process through the various

queues.

Fig. 10.12 Illustration of process transition through various queues

Based on the scheduling algorithm used, the scheduling can be classifi ed into the following categories.

10.5.1 Non-preemptive Scheduling

Non-preemptive scheduling is employed in systems, which implement non-preemptive multitasking model.

In this scheduling type, the currently executing task/process is allowed to run until it terminates or enters the

‘Wait’ state waiting for an I/O or system resource. The various types of non-preemptive scheduling adopted

in task/process scheduling are listed below.

† Queue is a special kind of arrangement of a collection of objects. In the operating system context queue is considered as a buffer.

412 Introduc on to Embedded Systems

10.5.1.1  First-Come-First-Served (FCFS)/ FIFO Scheduling
As the name indicates, the First-Come-First-Served (FCFS) scheduling algorithm allocates CPU time to the

processes based on the order in which they enter the ‘Ready’ queue. The fi rst entered process is serviced fi rst.

It is same as any real world application where queue systems are used; e.g. Ticketing reservation system

where people need to stand in a queue and the fi rst person standing in the queue is serviced fi rst. FCFS

scheduling is also known as First In First Out (FIFO) where the process which is put fi rst into the ‘Ready’

queue is serviced fi rst.

Example 1

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively

enters the ready queue together in the order P1, P2, P3. Calculate the waiting time and Turn Around Time

(TAT) for each process and the average waiting time and Turn Around Time (Assuming there is no I/O

waiting for the processes).

The sequence of execution of the processes by the CPU is represented as

P1 P2 P3

0 10 15 22

10 5 7

Assuming the CPU is readily available at the time of arrival of P1, P1 starts executing without any waiting in

the ‘Ready’ queue. Hence the waiting time for P1 is zero. The waiting time for all processes are given as

Waiting Time for P1 = 0 ms (P1 starts executing fi rst)

Waiting Time for P2 = 10 ms (P2 starts executing after completing P1)

Waiting Time for P3 = 15 ms (P3 starts executing after completing P1 and P2)

Average waiting time = (Waiting time for all processes) / No. of Processes

 = (Waiting time for (P1+P2+P3)) / 3

 = (0+10+15)/3 = 25/3

 = 8.33 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 15 ms (-Do-)

Turn Around Time (TAT) for P3 = 22 ms (-Do-)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

 = (Turn Around Time for (P1+P2+P3)) / 3

 = (10+15+22)/3 = 47/3

 = 15.66 milliseconds

Average Turn Around Time (TAT) is the sum of average waiting time and average execution time.

Average Execution Time = (Execution time for all processes)/No. of processes

 = (Execution time for (P1+P2+P3))/3

 = (10+5+7)/3 = 22/3

 = 7.33

Average Turn Around Time = Average waiting time + Average execution time

 = 8.33 + 7.33

 = 15.66 milliseconds

 Real-Time Opera ng System (RTOS) based Embedded System Design 413

Example 2

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average waiting time and
Turn Around Time (Assuming there is no I/O waiting for the processes) for the above example if the process
enters the ‘Ready’ queue together in the order P2, P1, P3.
 The sequence of execution of the processes by the CPU is represented as

P1P2 P3

1550 22

105 7

Assuming the CPU is readily available at the time of arrival of P2, P2 starts executing without any waiting in
the ‘Ready’ queue. Hence the waiting time for P2 is zero. The waiting time for all processes is given as
Waiting Time for P2 = 0 ms (P2 starts executing fi rst)
Waiting Time for P1 = 5 ms (P1 starts executing after completing P2)
Waiting Time for P3 = 15 ms (P3 starts executing after completing P2 and P1)
Average waiting time = (Waiting time for all processes) / No. of Processes
 = (Waiting time for (P2+P1+P3)) / 3
 = (0+5+15)/3 = 20/3
 = 6.66 milliseconds
Turn Around Time (TAT) for P2 = 5 ms (Time spent in Ready Queue + Execution Time)
Turn Around Time (TAT) for P1 = 15 ms (-Do-)
Turn Around Time (TAT) for P3 = 22 ms (-Do-)
Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes
 = (Turn Around Time for (P2+P1+P3)) / 3
 = (5+15+22)/3 = 42/3
 = 14 milliseconds

The Average waiting time and Turn Around Time (TAT) depends on the order in which the processes

enter the ‘Ready’ queue, regardless there estimated completion time.

From the above two examples it is clear that the Average waiting time and Turn Around Time improve if

the process with shortest execution completion time is scheduled fi rst.

The major drawback of FCFS algorithm is that it favours monopoly of process. A process, which does

not contain any I/O operation, continues its execution until it fi nishes its task. If the process contains any

I/O operation, the CPU is relinquished by the process. In general, FCFS favours CPU bound processes and

I/O bound processes may have to wait until the completion of CPU bound process, if the currently executing

process is a CPU bound process. This leads to poor device utilisation. The average waiting time is not

minimal for FCFS scheduling algorithm.

10.5.1.2  Last-Come-First Served (LCFS)/LIFO Scheduling
The Last-Come-First Served (LCFS) scheduling algorithm also allocates CPU time to the processes based

on the order in which they are entered in the ‘Ready’ queue. The last entered process is serviced fi rst. LCFS

scheduling is also known as Last In First Out (LIFO) where the process, which is put last into the ‘Ready’

queue, is serviced fi rst.

Example 1

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively

enters the ready queue together in the order P1, P2, P3 (Assume only P1 is present in the ‘Ready’ queue when

414 Introduc on to Embedded Systems

the scheduler picks it up and P2, P3 entered ‘Ready’ queue after that). Now a new process P4 with estimated

completion time 6 ms enters the ‘Ready’ queue after 5 ms of scheduling P1. Calculate the waiting time and

Turn Around Time (TAT) for each process and the Average waiting time and Turn Around Time (Assuming

there is no I/O waiting for the processes). Assume all the processes contain only CPU operation and no I/O

operations are involved.

 Initially there is only P1 available in the Ready queue and the scheduling sequence will be P1, P3, P2. P4

enters the queue during the execution of P1 and becomes the last process entered the ‘Ready’ queue. Now the

order of execution changes to P1, P4, P3, and P2 as given below.

P1 P2P3P4

0 10 16 23 28

10 76 5

The waiting time for all the processes is given as

Waiting Time for P1 = 0 ms (P1 starts executing fi rst)

Waiting Time for P4 = 5 ms (P4 starts executing after completing P1. But P4 arrived after 5 ms of execution of

P1. Hence its waiting time = Execution start time – Arrival Time = 10 – 5 = 5)

Waiting Time for P3 = 16 ms (P3 starts executing after completing P1 and P4)

Waiting Time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

 = (Waiting time for (P1+P4+P3+P2)) / 4

 = (0 + 5 + 16 + 23)/4 = 44/4

 = 11 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 11 ms (Time spent in Ready Queue + Execution Time = (Execution

Start Time – Arrival Time) + Estimated Execution Time = (10

– 5) + 6 = 5 + 6)

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

 = (Turn Around Time for (P1+P4+P3+P2)) / 4

 = (10+11+23+28)/4 = 72/4

 = 18 milliseconds

LCFS scheduling is not optimal and it also possesses the same drawback as that of FCFS algorithm.

10.5.1.3  Shortest Job First (SJF) Scheduling
Shortest Job First (SJF) scheduling algorithm ‘sorts the ‘Ready’ queue’ each time a process relinquishes the

CPU (either the process terminates or enters the ‘Wait’ state waiting for I/O or system resource) to pick the

process with shortest (least) estimated completion/run time. In SJF, the process with the shortest estimated

run time is scheduled fi rst, followed by the next shortest process, and so on.

Example 1

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively

enters the ready queue together. Calculate the waiting time and Turn Around Time (TAT) for each process

 Real-Time Opera ng System (RTOS) based Embedded System Design 415

and the Average waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes) in

SJF algorithm.

The scheduler sorts the ‘Ready’ queue based on the shortest estimated completion time and schedules the

process with the least estimated completion time fi rst and the next least one as second, and so on. The order

in which the processes are scheduled for execution is represented as

P1P2 P3

0 5 12 22

105 7

The estimated execution time of P2 is the least (5 ms) followed by P3 (7 ms) and P1 (10 ms).

The waiting time for all processes are given as

Waiting Time for P2 = 0 ms (P2 starts executing fi rst)

Waiting Time for P3 = 5 ms (P3 starts executing after completing P2)

Waiting Time for P1 = 12 ms (P1 starts executing after completing P2 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

 = (Waiting time for (P2+P3+P1)) / 3

 = (0+5+12)/3 = 17/3

 = 5.66 milliseconds

Turn Around Time (TAT) for P2 = 5 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P3 = 12 ms (-Do-)

Turn Around Time (TAT) for P1 = 22 ms (-Do-)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

 = (Turn Around Time for (P2+P3+P1)) / 3

 = (5+12+22)/3 = 39/3

 = 13 milliseconds

Average Turn Around Time (TAT) is the sum of average waiting time and average execution time.

The average Execution time = (Execution time for all processes)/No. of processes

 = (Execution time for (P1+P2+P3))/3

 = (10+5+7)/3 = 22/3 = 7.33

Average Turn Around Time = Average Waiting time + Average Execution time

 = 5.66 + 7.33

 = 13 milliseconds

From this example, it is clear that the average waiting time and turn around time is much improved with the

SJF scheduling for the same processes when compared to the FCFS algorithm.

Example 2

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average waiting time and

Turn Around Time for the above example if a new process P4 with estimated completion time 2 ms enters

the ‘Ready’ queue after 2 ms of execution of P2. Assume all the processes contain only CPU operation and

no I/O operations are involved.

At the beginning, there are only three processes (P1, P2 and P3) available in the ‘Ready’ queue and

the SJF scheduler picks up the process with the least execution completion time (In this example P2 with

416 Introduc on to Embedded Systems

execution completion time 5 ms) for scheduling. The execution sequence diagram for this is same as that of

Example 1.

Now process P4 with estimated execution completion time 2 ms enters the ‘Ready’ queue after 2 ms of

start of execution of P2. Since the SJF algorithm is non-preemptive and process P2 does not contain any I/O

operations, P2 continues its execution. After 5 ms of scheduling, P2 terminates and now the scheduler again

sorts the ‘Ready’ queue for process with least execution completion time. Since the execution completion

time for P4 (2 ms) is less than that of P3 (7 ms), which was supposed to be run after the completion of P2

as per the ‘Ready’ queue available at the beginning of execution scheduling, P4 is picked up for executing.

Due to the arrival of the process P4 with execution time 2 ms, the ‘Ready’ queue is re-sorted in the order P2,

P4, P3, P1. At the beginning it was P2, P3, P1. The execution sequence now changes as per the following

diagram

P1P2 P3

0 5 14 24

105 7

P4

7

2

The waiting time for all the processes are given as

Waiting time for P2 = 0 ms (P2 starts executing fi rst)

Waiting time for P4 = 3 ms (P4 starts executing after completing P2. But P4 arrived after 2 ms of execution

of P2. Hence its waiting time = Execution start time – Arrival Time = 5 – 2 = 3)

Waiting time for P3 = 7 ms (P3 starts executing after completing P2 and P4)

Waiting time for P1 = 14 ms (P1 starts executing after completing P2, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

 = (Waiting time for (P2+P4+P3+P1)) / 4

 = (0 + 3 + 7 + 14)/4 = 24/4

 = 6 milliseconds

Turn Around Time (TAT) for P2 = 5 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 5 ms (Time spent in Ready Queue + Execution Time = (Execution Start

Time – Arrival Time) + Estimated Execution Time = (5 – 2) + 2

= 3 + 2)

Turn Around Time (TAT) for P3 = 14 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P1 = 24 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all Processes) / No. of Processes

 = (Turn Around Time for (P2+P4+P3+P1)) / 4

 = (5+5+14+24)/4 = 48/4

 = 12 milliseconds

The average waiting time for a given set of process is minimal in SJF scheduling and so it is optimal

compared to other non-preemptive scheduling like FCFS. The major drawback of SJF algorithm is that

a process whose estimated execution completion time is high may not get a chance to execute if more

and more processes with least estimated execution time enters the ‘Ready’ queue before the process with

longest estimated execution time started its execution (In non-preemptive SJF). This condition is known as

‘Starvation’. Another drawback of SJF is that it is diffi cult to know in advance the next shortest process in

the ‘Ready’ queue for scheduling since new processes with different estimated execution time keep entering

the ‘Ready’ queue at any point of time.

 Real-Time Opera ng System (RTOS) based Embedded System Design 417

10.5.1.4  Priority Based Scheduling
The Turn Around Time (TAT) and waiting time for processes in non-preemptive scheduling varies with the

type of scheduling algorithm. Priority based non-preemptive scheduling algorithm ensures that a process

with high priority is serviced at the earliest compared to other low priority processes in the ‘Ready’ queue.

The priority of a task/process can be indicated through various mechanisms. The Shortest Job First (SJF)

algorithm can be viewed as a priority based scheduling where each task is prioritised in the order of the

time required to complete the task. The lower the time required for completing a process the higher is its

priority in SJF algorithm. Another way of priority assigning is associating a priority to the task/process at

the time of creation of the task/process. The priority is a number ranging from 0 to the maximum priority

supported by the OS. The maximum level of priority is OS dependent. For Example, Windows CE supports

256 levels of priority (0 to 255 priority numbers). While creating the process/task, the priority can be assigned

to it. The priority number associated with a task/process is the direct indication of its priority. The priority

variation from high to low is represented by numbers from 0 to the maximum priority or by numbers from

maximum priority to 0. For Windows CE operating system a priority number 0 indicates the highest priority

and 255 indicates the lowest priority. This convention need not be universal and it depends on the kernel

level implementation of the priority structure. The non-preemptive priority based scheduler sorts the ‘Ready’

queue based on priority and picks the process with the highest level of priority for execution.

Example 1

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds and priorities

0, 3, 2 (0—highest priority, 3—lowest priority) respectively enters the ready queue together. Calculate the

waiting time and Turn Around Time (TAT) for each process and the Average waiting time and Turn Around

Time (Assuming there is no I/O waiting for the processes) in priority based scheduling algorithm.

 The scheduler sorts the ‘Ready’ queue based on the priority and schedules the process with the highest

priority (P1 with priority number 0) fi rst and the next high priority process (P3 with priority number 2) as

second, and so on. The order in which the processes are scheduled for execution is represented as

P1 P2P3

0 10 17 22

10 57

The waiting time for all the processes are given as

Waiting time for P1 = 0 ms (P1 starts executing fi rst)

Waiting time for P3 = 10 ms (P3 starts executing after completing P1)

Waiting time for P2 = 17 ms (P2 starts executing after completing P1 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

 = (Waiting time for (P1+P3+P2)) / 3

 = (0+10+17)/3 = 27/3

 = 9 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P3 = 17 ms (-Do-)

Turn Around Time (TAT) for P2 = 22 ms (-Do-)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

418 Introduc on to Embedded Systems

 = (Turn Around Time for (P1+P3+P2)) / 3

 = (10+17+22)/3 = 49/3

 = 16.33 milliseconds

Example 2

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average waiting time and

Turn Around Time for the above example if a new process P4 with estimated completion time 6 ms and

priority 1 enters the ‘Ready’ queue after 5 ms of execution of P1. Assume all the processes contain only CPU

operation and no I/O operations are involved.

At the beginning, there are only three processes (P1, P2 and P3) available in the ‘Ready’ queue and the

scheduler picks up the process with the highest priority (In this example P1 with priority 0) for scheduling.

The execution sequence diagram for this is same as that of Example 1. Now process P4 with estimated

execution completion time 6 ms and priority 1 enters the ‘Ready’ queue after 5 ms of execution of P1. Since

the scheduling algorithm is non-preemptive and process P1 does not contain any I/O operations, P1 continues

its execution. After 10 ms of scheduling, P1 terminates and now the scheduler again sorts the ‘Ready’ queue

for process with highest priority. Since the priority for P4 (priority 1) is higher than that of P3 (priority 2),

which was supposed to be run after the completion of P1 as per the ‘Ready’ queue available at the beginning

of execution scheduling, P4 is picked up for executing. Due to the arrival of the process P4 with priority 1,

the ‘Ready’ queue is resorted in the order P1, P4, P3, P2. At the beginning it was P1, P3, P2. The execution

sequence now changes as per the following diagram

P1 P2P3

0 16 23 28
10 57

P4

10
6

The waiting time for all the processes are given as

Waiting time for P1 = 0 ms (P1 starts executing fi rst)

Waiting time for P4 = 5 ms (P4 starts executing after completing P1. But P4 arrived after 5 ms of execution of

P1. Hence its waiting time = Execution start time – Arrival Time = 10 – 5 = 5)

Waiting time for P3 = 16 ms (P3 starts executing after completing P1 and P4)

Waiting time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

 = (Waiting time for (P1+P4+P3+P2)) / 4

 = (0 + 5 + 16 + 23)/4 = 44/4

 = 11 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 11 ms (Time spent in Ready Queue + Execution

 Time = (Execution Start Time – Arrival Time) + Estimated

Execution Time = (10 – 5) + 6 = 5 + 6)

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

 = (Turn Around Time for (P2 + P4 + P3 + P1)) / 4

 = (10 + 11 + 23 + 28)/4 = 72/4

 = 18 milliseconds

 Real-Time Opera ng System (RTOS) based Embedded System Design 419

Similar to SJF scheduling algorithm, non-preemptive priority based algorithm also possess the drawback

of ‘Starvation’ where a process whose priority is low may not get a chance to execute if more and more

processes with higher priorities enter the ‘Ready’ queue before the process with lower priority started its

execution. ‘Starvation’ can be effectively tackled in priority based non-preemptive scheduling by dynamically

raising the priority of the low priority task/process which is under starvation (waiting in the ready queue for a

longer time for getting the CPU time). The technique of gradually raising the priority of processes which are

waiting in the ‘Ready’ queue as time progresses, for preventing ‘Starvation’, is known as ‘Aging’.

10.5.2 Preemptive Scheduling

Preemptive scheduling is employed in systems, which implements preemptive multitasking model. In

preemptive scheduling, every task in the ‘Ready’ queue gets a chance to execute. When and how often each

process gets a chance to execute (gets the CPU time) is dependent on the type of preemptive scheduling algorithm

used for scheduling the processes. In this kind of scheduling, the scheduler can preempt (stop temporarily)

the currently executing task/process and select another task from the ‘Ready’ queue for execution. When to

pre-empt a task and which task is to be picked up from the ‘Ready’ queue for execution after preempting the

current task is purely dependent on the scheduling algorithm. A task which is preempted by the scheduler

is moved to the ‘Ready’ queue. The act of moving a ‘Running’ process/task into the ‘Ready’ queue by the

scheduler, without the processes requesting for it is known as ‘Preemption’. Preemptive scheduling can be

implemented in different approaches. The two important approaches adopted in preemptive scheduling are

time-based preemption and priority-based preemption. The various types of preemptive scheduling adopted

in task/process scheduling are explained below.

10.5.2.1  Preemp ve SJF Scheduling/ Shortest Remaining Time (SRT)
The non-preemptive SJF scheduling algorithm sorts the ‘Ready’ queue only after completing the execution of

the current process or when the process enters ‘Wait’ state, whereas the preemptive SJF scheduling algorithm

sorts the ‘Ready’ queue when a new process enters the ‘Ready’ queue and checks whether the execution

time of the new process is shorter than the remaining of the total estimated time for the currently executing

process. If the execution time of the new process is less, the currently executing process is preempted and

the new process is scheduled for execution. Thus preemptive SJF scheduling always compares the execution

completion time (It is same as the remaining time for the new process) of a new process entered the ‘Ready’

queue with the remaining time for completion of the currently executing process and schedules the process

with shortest remaining time for execution. Preemptive SJF scheduling is also known as Shortest Remaining

Time (SRT) scheduling.

Now let us solve Example 2 given under the Non-preemptive SJF scheduling for preemptive SJF

scheduling. The problem statement and solution is explained in the following example.

Example 1

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively

enters the ready queue together. A new process P4 with estimated completion time 2 ms enters the ‘Ready’

queue after 2 ms. Assume all the processes contain only CPU operation and no I/O operations are involved.

At the beginning, there are only three processes (P1, P2 and P3) available in the ‘Ready’ queue and

the SRT scheduler picks up the process with the shortest remaining time for execution completion (In this

example, P2 with remaining time 5 ms) for scheduling. The execution sequence diagram for this is same as

that of example 1 under non-preemptive SJF scheduling.

Now process P4 with estimated execution completion time 2 ms enters the ‘Ready’ queue after 2 ms of

420 Introduc on to Embedded Systems

start of execution of P2. Since the SRT algorithm is preemptive, the remaining time for completion of process

P2 is checked with the remaining time for completion of process P4. The remaining time for completion of

P2 is 3 ms which is greater than that of the remaining time for completion of the newly entered process P4

(2 ms). Hence P2 is preempted and P4 is scheduled for execution. P4 continues its execution to fi nish since

there is no new process entered in the ‘Ready’ queue during its execution. After 2 ms of scheduling P4

terminates and now the scheduler again sorts the ‘Ready’ queue based on the remaining time for completion

of the processes present in the ‘Ready’ queue. Since the remaining time for P2 (3 ms), which is preempted

by P4 is less than that of the remaining time for other processes in the ‘Ready’ queue, P2 is scheduled for

execution. Due to the arrival of the process P4 with execution time 2 ms, the ‘Ready’ queue is re-sorted in

the order P2, P4, P2, P3, P1. At the beginning it was P2, P3, P1. The execution sequence now changes as per

the following diagram

3

P1P2 P3

0 2 4 7 14 24

102

P4 P2

2 7

The waiting time for all the processes are given as

Waiting time for P2 = 0 ms + (4 – 2) ms = 2 ms (P2 starts executing fi rst and is interrupted by P4 and has to

wait till the completion of P4 to get the next CPU slot)

Waiting time for P4 = 0 ms (P4 starts executing by preempting P2 since the execution time for completion

of P4 (2 ms) is less than that of the Remaining time for execution completion of P2

(Here it is 3 ms))

Waiting time for P3 = 7 ms (P3 starts executing after completing P4 and P2)

Waiting time for P1 = 14 ms (P1 starts executing after completing P4, P2 and P3)

Average waiting time = (Waiting time for all the processes) / No. of Processes

 = (Waiting time for (P4+P2+P3+P1)) / 4

 = (0 + 2 + 7 + 14)/4 = 23/4

 = 5.75 milliseconds

Turn Around Time (TAT) for P2 = 7 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 2 ms (Time spent in Ready Queue + Execution Time = (Execution Start

Time – Arrival Time) + Estimated Execution Time = (2 – 2) + 2)

Turn Around Time (TAT) for P3 = 14 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P1 = 24 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes

 = (Turn Around Time for (P2+P4+P3+P1)) / 4

 = (7+2+14+24)/4 = 47/4

 = 11.75 milliseconds

Now let’s compare the Average Waiting time and Average Turn Around Time with that of the Average

waiting time and Average Turn Around Time for non-preemptive SJF scheduling (Refer to Example 2 given

under the section Non-preemptive SJF scheduling)

Average Waiting Time in non-preemptive SJF scheduling = 6 ms

Average Waiting Time in preemptive SJF scheduling = 5.75 ms

Average Turn Around Time in non-preemptive SJF scheduling = 12 ms

Average Turn Around Time in preemptive SJF scheduling = 11.75 ms

 Real-Time Opera ng System (RTOS) based Embedded System Design 421

This reveals that the Average waiting Time and Turn Around Time (TAT) improves signifi cantly with

preemptive SJF scheduling.

10.5.2.2  Round Robin (RR) Scheduling
The term Round Robin is very popular among the sports and games activities. You might have heard about

‘Round Robin’ league or ‘Knock out’ league associated with any football or cricket tournament. In the ‘Round

Robin’ league each team in a group gets an equal chance to play against the rest of the teams in the same

group whereas in the ‘Knock out’ league the losing team in a match moves out of the tournament ☺.

In the process scheduling context also, ‘Round Robin’ brings the same message “Equal chance to all”.

In Round Robin scheduling, each process in the ‘Ready’ queue is executed for a pre-defi ned time slot. The

execution starts with picking up the fi rst process in the ‘Ready’ queue (see Fig. 10.13). It is executed for a

pre-defi ned time and when the pre-defi ned time elapses or the process completes (before the pre-defi ned time

slice), the next process in the ‘Ready’ queue is selected for execution. This is repeated for all the processes

in the ‘Ready’ queue. Once each process in the ‘Ready’ queue is executed for the pre-defi ned time period,

the scheduler comes back and picks the fi rst process in the ‘Ready’ queue again for execution. The sequence

is repeated. This reveals that the Round Robin scheduling is similar to the FCFS scheduling and the only

difference is that a time slice based preemption is added to switch the execution between the processes in

the ‘Ready’ queue. The ‘Ready’ queue can be considered as a circular queue in which the scheduler picks

up the fi rst process for execution and moves to the next till the end of the queue and then comes back to the

beginning of the queue to pick up the fi rst process.

Process 4 Process 2

Process 1

Execution Switch
Execution Switch

Execution Switch
Execution Switch

Process 3

Fig. 10.13 Round Robin Scheduling

The time slice is provided by the timer tick feature of the time management unit of the OS kernel (Refer the

Time management section under the subtopic ‘The Real-Time kernel’ for more details on Timer tick). Time

slice is kernel dependent and it varies in the order of a few microseconds to milliseconds. Certain OS kernels

may allow the time slice as user confi gurable. Round Robin scheduling ensures that every process gets a fi xed

amount of CPU time for execution. When the process gets its fi xed time for execution is determined by the

422 Introduc on to Embedded Systems

FCFS policy (That is, a process entering the Ready queue fi rst gets its fi xed execution time fi rst and so on…).

If a process terminates before the elapse of the time slice, the process releases the CPU voluntarily and the

next process in the queue is scheduled for execution by the scheduler. The implementation of RR scheduling

is kernel dependent. The following code snippet illustrates the RR scheduling implementation for RTX51

Tiny OS, an 8bit OS for 8051 microcontroller from Keil Software (www.keil.com), an ARM® Company.

#include <rtx51tny.h> /* Defi nitions for RTX51 Tiny */

int counter0;

int counter1;

job0 () _task_ 0 {

 os_create_task (1); /* Mark task 1 as “ready” */

 while (1) { /* Endless loop */

 counter0++; /* Increment counter 0 */

 }

}

job1 () _task_ 1 {

 while (1) { /* Endless loop */

 counter1++; /* Increment counter 1 */

 }

}

RTX51 defi nes the tasks as simple C functions with void return type and void argument list. The attribute

task is used for declaring a function as task. The general form of declaring a task is

 void func (void) _task_ task_id

where func is the name of the task and task_id is the ID of the task. RTX51 supports up to 16 tasks and so

task_id varies from 0 to 15. All tasks should be implemented as endless loops.

The two tasks in this program are counter loops. RTX51 Tiny starts executing task 0 which is the function

named job0. This function creates another task called job1. After job0 executes for its time slice, RTX51

Tiny switches to job1. After job1 executes for its time slice, RTX51 Tiny switches back to job0. This process

is repeated forever.

Now let’s check how the RTX51 Tiny RR Scheduling can be implemented in an embedded device (A

smart card reader) which addresses the following requirements.

Check the presence of a card ∑

Process the data received from the card ∑

Update the Display ∑

Check the serial port for command/data ∑

Process the data received from serial port ∑

These four requirements can be considered as four tasks. Implement them as four RTX51 tasks as explained

below.

void check_card_task (void) _task_ 1

{

/* This task checks for the presence of a card */

/* Implement the necessary functionality here */

}

 Real-Time Opera ng System (RTOS) based Embedded System Design 423

void process_card_task (void) _task_ 2

{

/* This task processes the data received from the card */

/* Implement the necessary functionality here */

}

void check_serial_io_task (void) _task_ 3

{

/* This task checks for serial I/O */

/* Implement the necessary functionality here */

}

void process_serial_data_task (void) _task_ 4

{

/* This task processes the data received from the serial port */

/* Implement the necessary functionality here */

}

Now the tasks are created. Next step is scheduling the tasks. The following code snippet illustrates the

scheduling of tasks.

void startup_task (void) _task_ 0

{

os_create_task (1); /* Create check_card_task Task */

os_create_task (2); /* Create process_card_task Task */

os_create_task (3); /* Create serial_io_task Task */

os_create_task (4); /* Create serial_data_task Task */

os_delete_task (0); /* Delete the Startup Task */

}

The os_create_task (task_ID) RTX51 Tiny kernel call puts the task with task ID task_ID in the ‘Ready’

state. All the ready tasks begin their execution at the next available opportunity. RTX51 Tiny does not have

a main () function to begin the code execution; instead it starts with executing task 0. Task 0 is used for

creating other tasks. Once all the tasks are created, task 0 is stopped and removed from the task list with

the os_delete_task kernel call. The RR scheduler selects each task based on the time slice and continues the

execution. If we observe the tasks we can see that there is no point in executing the task process_card_task

(Task 2) without detecting a card and executing the task process_serial_data_task (Task 4) without receiving

some data in the serial port. In summary task 2 needs to be executed only when task 1 reports the presence

of a card and task 4 needs to be executed only when task 3 reports the arrival of data at serial port. So these

tasks (tasks 2 and 4) need to be put in the ‘Ready’ state only on satisfying these conditions. Till then these

tasks can be put in the ‘Wait’ state so that the RR scheduler will not pick them for scheduling and the RR

scheduling is effectively utilised among the other tasks. This can be achieved by implementing the wait and

notify mechanism in the related tasks. Task 2 can be coded in a way that it waits for the card present event

and task 1 signals the event ‘card detected’. In a similar fashion Task 4 can be coded in such a way that it

waits for the serial data received event and task 3 signals the reception of serial data on receiving serial data

from serial port. The following code snippet explains the same.

void check_card_task (void) _task_ 1

{

/* This task checks for the presence of a card */

424 Introduc on to Embedded Systems

/* Implement the necessary functionality here */

while (1)

{

//Function for checking the presence of card and card reading

//………………………………

if (card is present)

//Signal card detected to task 2

os_send_signal (2)

}

}

void process_card_task (void) _task_ 2

{

/* This task processes the data received from the card */

/* Implement the necessary functionality here */

while (1)

{

//Function for checking the signaling of card present event

os_wait1(K_SIG);

//Process card data

}

}

void check_serial_io_task (void) _task_ 3

{

/* This task checks for serial I/O */

/* Implement the necessary functionality here */

while (1)

{

//Function for checking the reception of serial data

//………………………………

if (data is received)

//Signal serial data reception to task 4

os_send_signal (4)

}

}

void process_serial_data_task (void) _task_ 4

{

/* This task processes the data received from the serial port */

/* Implement the necessary functionality here */

while (1)

{

//Function for checking the signaling of serial data received event

os_wait1(K_SIG);

//Process card data

}

}

 Real-Time Opera ng System (RTOS) based Embedded System Design 425

The os_send_signal (Task ID) kernel call sends a signal to task Task ID. If the specifi ed task is already

waiting for a signal, this function call readies the task for execution but does not start it. The os_wait1

(event) kernel call halts the current task and waits for an event to occur. The event argument specifi es the

event to wait for and may have only the value K_SIG which waits for a signal. RTX51 uses the Timer 0 of

8051 for time slice generation. The time slice can be confi gured by the user by changing the time slice related

parameters in the RTX51 Tiny OS confi guration fi le CONF_TNY.A51 fi le which is located in the \Keil_v5\

C51\RtxTiny2\SourceCode\ folder. Confi guration options in CONF_TNY.A51 allow users to:

Specify the Timer Tick Interrupt Register Bank. ∑

Specify the Timer Tick Interval (in ∑ 8051 machine cycles).

Specify user code to execute in the Timer Tick Interrupt. ∑

Specify the Round-Robin Timeout. ∑

Enable or disable Round-Robin Task Switching. ∑

Specify that your application includes long duration interrupts. ∑

Specify whether or not code banking is used. ∑

Defi ne the top of the RTX51 Tiny stack. ∑

Specify the minimum stack space required. ∑

Specify code to execute in the event of a stack error. ∑

Defi ne idle task operations. ∑

The RTX51 kernel provides a set of task management functions for managing the tasks. At any point of

time each RTX51 task is exactly in any one of the following state.

Task State State Description

RUNNING The task that is currently running is in the RUNNING State. Only one task at a time may be

in this state. The os_running_task_id kernel call returns the task number (ID) of the currently

executing task.

READY Tasks which are ready to run are in the READY State. Once the Running task has completed

processing, RTX51 Tiny selects and starts the next Ready task. A task may be made ready im-

mediately (even if the task is waiting for a timeout or signal) by setting its ready fl ag using the

os_set_ready or isr_set_ready kernel functions.

WAITING Tasks which are waiting for an event are in the WAITING State. Once the event occurs, the task

is switched to the READY State. The os_wait function is used for placing a task in the WAITING

State.

DELETED Tasks which have not been started or tasks which have been deleted are in the DELETED State.

The os_delete_task routine places a task that has been started (with os_create_task) into the

DELETED State.

TIME-OUT Tasks which were interrupted by a Round-Robin Time-Out are in the TIME-OUT State. This state

is equivalent to the READY State for Round-Robin programs.

Refer the documentation available with RTX51 Tiny OS for more information on the various RTX51 task

management kernel functions and their usage.

RR scheduling with interrupts is a good choice for the design of comparatively less complex Real-Time

Embedded Systems. In this approach, the tasks which require less Real-Time attention can be scheduled with

Round Robin scheduling and the tasks which require Real-Time attention can be scheduled through Interrupt

Service Routines. RTX51 Tiny supports Interrupts with RR scheduling. For RTX51 the time slice for RR

scheduling is provided by the Timer interrupt and if the interrupt is of high priority than that of the timer

interrupt and if its service time (ISR) is longer than the timer tick interval, the RTX51 timer interrupt may

426 Introduc on to Embedded Systems

be interrupted by the ISR and it may be reentered by a subsequent RX51 Tiny timer interrupt. Hence proper

care must be taken to limit the ISR time within the timer tick interval or to protect the timer tick interrupt

code from reentrancy. Otherwise unexpected results may occur. The limitations of RR with interrupt generic

approach are the limited number of interrupts supported by embedded processors and the interrupt latency

happening due to the context switching overhead.

 RR can also be used as technique for resolving the priority in scheduling among the tasks with same

level of priority. We will discuss about how RR scheduling can be used for resolving the priority among

equal tasks under the VxWorks kernel in a later chapter.

Example 1

Three processes with process IDs P1, P2, P3 with estimated completion time 6, 4, 2 milliseconds respectively,

enters the ready queue together in the order P1, P2, P3. Calculate the waiting time and Turn Around Time

(TAT) for each process and the Average waiting time and Turn Around Time (Assuming there is no I/O

waiting for the processes) in RR algorithm with Time slice = 2 ms.

The scheduler sorts the ‘Ready’ queue based on the FCFS policy and picks up the fi rst process P1 from the

‘Ready’ queue and executes it for the time slice 2 ms. When the time slice is expired, P1 is preempted and P2

is scheduled for execution. The Time slice expires after 2ms of execution of P2. Now P2 is preempted and P3

is picked up for execution. P3 completes its execution within the time slice and the scheduler picks P1 again

for execution for the next time slice. This procedure is repeated till all the processes are serviced. The order

in which the processes are scheduled for execution is represented as

4 8

P1

0 2 6 10

2

P2 P3 P1 P2 P1

12

2 2 2 2 2

The waiting time for all the processes are given as

Waiting time for P1 = 0 + (6 – 2) + (10 – 8) = 0 + 4 + 2 = 6 ms

 (P1 starts executing fi rst and waits for two time slices to get execution back and again

1 time slice for getting CPU time)

Waiting time for P2 = (2 – 0) + (8 – 4) = 2 + 4 = 6 ms

 (P2 starts executing after P1 executes for 1 time slice and waits for two time slices to

get the CPU time)

Waiting time for P3 = (4 – 0) = 4 ms

 (P3 starts executing after completing the fi rst time slices for P1 and P2 and completes

its execution in a single time slice)

Average waiting time = (Waiting time for all the processes) / No. of Processes

 = (Waiting time for (P1 + P2 + P3)) / 3

 = (6 + 6 + 4)/3 = 16/3

 = 5.33 milliseconds

Turn Around Time (TAT) for P1 = 12 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 10 ms (-Do-)

Turn Around Time (TAT) for P3 = 6 ms (-Do-)

 Real-Time Opera ng System (RTOS) based Embedded System Design 427

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes

 = (Turn Around Time for (P1 + P2 + P3))/3

 = (12 + 10 + 6)/3 = 28/3

 = 9.33 milliseconds

Average Turn Around Time (TAT) is the sum of average waiting time and average execution time.

Average Execution time = (Execution time for all the process)/No. of processes

 = (Execution time for (P1 + P2 + P3))/3

 = (6 + 4 + 2)/3 = 12/3 = 4

Average Turn Around Time = Average Waiting time + Average Execution time

 = 5.33 + 4

 = 9.33 milliseconds

RR scheduling involves lot of overhead in maintaining the time slice information for every process which

is currently being executed.

10.5.2.3  Priority Based Scheduling
Priority based preemptive scheduling algorithm is same as that of the non-preemptive priority based

scheduling except for the switching of execution between tasks. In preemptive scheduling, any high priority

process entering the ‘Ready’ queue is immediately scheduled for execution whereas in the non-preemptive

scheduling any high priority process entering the ‘Ready’ queue is scheduled only after the currently executing

process completes its execution or only when it voluntarily relinquishes the CPU. The priority of a task/

process in preemptive scheduling is indicated in the same way as that of the mechanism adopted for non-

preemptive multitasking. Refer the non-preemptive priority based scheduling discussed in an earlier section

of this chapter for more details.

Example 1

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds and

priorities 1, 3, 2 (0—highest priority, 3—lowest priority) respectively enters the ready queue together. A new

process P4 with estimated completion time 6 ms and priority 0 enters the ‘Ready’ queue after 5 ms of start of

execution of P1. Assume all the processes contain only CPU operation and no I/O operations are involved.

At the beginning, there are only three processes (P1, P2 and P3) available in the ‘Ready’ queue and the

scheduler picks up the process with the highest priority (In this example P1 with priority 1) for scheduling.

Now process P4 with estimated execution completion time 6 ms and priority 0 enters the ‘Ready’ queue

after 5 ms of start of execution of P1. Since the scheduling algorithm is preemptive, P1 is preempted by P4

and P4 runs to completion. After 6 ms of scheduling, P4 terminates and now the scheduler again sorts the

‘Ready’ queue for process with highest priority. Since the priority for P1 (priority 1), which is preempted

by P4 is higher than that of P3 (priority 2) and P2 ((priority 3), P1 is again picked up for execution by the

scheduler. Due to the arrival of the process P4 with priority 0, the ‘Ready’ queue is resorted in the order P1,

P4, P1, P3, P2. At the beginning it was P1, P3, P2. The execution sequence now changes as per the following

diagram

P1 P2P3

0 11 23 28

5 57

P4

5

6

P1

5

16

428 Introduc on to Embedded Systems

The waiting time for all the processes are given as

Waiting time for P1 = 0 + (11 – 5) = 0 + 6 = 6 ms

 (P1 starts executing fi rst and gets preempted by P4 after 5 ms and again gets the CPU

time after completion of P4)

Waiting time for P4 = 0 ms

 (P4 starts executing immediately on entering the ‘Ready’ queue, by preempting P1)

Waiting time for P3 = 16 ms (P3 starts executing after completing P1 and P4)

Waiting time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all the processes) / No. of Processes

 = (Waiting time for (P1+P4+P3+P2)) / 4

 = (6 + 0 + 16 + 23)/4 = 45/4

 = 11.25 milliseconds

Turn Around Time (TAT) for P1 = 16 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 6 ms

 (Time spent in Ready Queue + Execution Time = (Execution Start Time – Arrival Time)

+ Estimated Execution Time = (5 – 5) + 6 = 0 + 6)

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes

 = (Turn Around Time for (P2 + P4 + P3 + P1)) / 4

 = (16 + 6 + 23 + 28)/4 = 73/4

 = 18.25 milliseconds

Priority based preemptive scheduling gives Real-Time attention to high priority tasks. Thus priority

based preemptive scheduling is adopted in systems which demands ‘Real-Time’ behaviour. Most of the

RTOSs make use of the preemptive priority based scheduling algorithm for process scheduling. Preemptive

priority based scheduling also possesses the same drawback of non-preemptive priority based scheduling–

‘ Starvation’. This can be eliminated by the ‘ Aging’ technique. Refer the section Non-preemptive priority

based scheduling for more details on ‘Starvation’ and ‘Aging’.

10.6 THREADS, PROCESSES AND SCHEDULING:

PUTTING THEM ALTOGETHER

So far we discussed about threads, processes and process/thread

scheduling. Now let us have a look at how these entities are addressed

in a real world implementation. Let’s examine the following pieces

of code.

//**

//Process 1

//**

#include “stdafx.h”

#include <windows.h>

#include <stdio.h>

//**

//Thread for executing Task

//**

void Task(void) {

while (1)

LO 6 Explain the different
Inter Process Communication
(IPC) mechanisms used by
tasks/process to communicate
and co-operate each other in a
multitasking environment

 Real-Time Opera ng System (RTOS) based Embedded System Design 429

{

 //Perform some task

 //Task execution time is 7.5 units of execution

 //Sleep for 17.5 units of execution

 Sleep(17.5); //Parameter given is not in milliseconds

 //Repeat task

 }

}

//**

//Main Thread.

//**

void main(void) {

 DWORD id;

 HANDLE hThread;

 //Create thread with normal priority

 //**

 hThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)Task,

 (LPVOID)0, 0, &id);

 if (NULL == hThread)

 {//Thread Creation failed. Exit process

 printf(“Creating thread failed : Error Code = %d”, GetLastError());

 return;

 }

 WaitForSingleObject(hThread, INFINITE);

 return;

}

//**

//Process 2

//**

#include “stdafx.h”

#include <windows.h>

#include <stdio.h>

//**

//Thread for executing Task

//**

void Task(void) {

 while (1)

 {

 //Perform some task

 ///Task execution time is 10 units of execution

 //Sleep for 5 units of execution

 Sleep(5); //Parameter given is not in milliseconds

 //Repeat task

 }

}

//**

//Main Thread.

430 Introduc on to Embedded Systems

//**

void main(void) {

 DWORD id;

 HANDLE hThread;

 //Create thread with above normal priority

 //**

 hThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)Task,

 (LPVOID)0, CREATE_SUSPENDED, &id);

 if (NULL == hThread)

 {//Thread Creation failed. Exit process

 printf(“Creating thread failed : Error Code = %d”, GetLastError());

 return;

 }

 SetThreadPriority(hThread, THREAD_PRIORITY_ABOVE_NORMAL);

 ResumeThread(hThread);

 WaitForSingleObject(hThread, INFINITE);

 return;

}

The fi rst piece of code represents a process (Process 1) with priority normal and it performs a task which

requires 7.5 units of execution time. After performing this task, the process sleeps for 17.5 units of execution

time and this is repeated forever. The second piece of code represents a process (Process 2) with priority

above normal and it performs a task which requires 10 units of execution time. After performing this task,

the process sleeps for 5 units of execution time and this is repeated forever. Process 2 is of higher priority

compared to process 1, since its priority is above ‘Normal’.

Now let us examine what happens if these processes are executed on a Real-Time kernel with pre-emptive

priority based scheduling policy. Imagine Process 1 and Process 2 are ready for execution. Both of them

enters the ‘Ready’ queue and the scheduler picks up Process 2 for execution since it is of higher priority

(Assuming there is no other process running/ready for execution, when both the processes are ‘Ready’ for

execution) compared to Process 1. Process 2 starts executing and runs until it executes the Sleep instruction

(i.e. after10 units of execution time). When the Sleep instruction is executed, Process 2 enters the wait state.

Since Process 1 is waiting for its turn in the ‘Ready’ queue, the scheduler picks up it for execution, resulting

in a context switch. The Process Control Block (PCB) of Process 2 is updated with the values of the Program

Counter (PC), stack pointer, etc. at the time of context switch. The estimated task execution time for Process

1 is 7.5 units of execution time and the sleeping time for Process 2 is 5 units of execution. After 5 units of

execution time, Process 2 enters the ‘Ready’ state and moves to the ‘Ready’ queue. Since it is of higher priority

compared to the running process, the running process (Process 1) is pre-empted and Process 2 is scheduled

for execution. Process 1 is moved to the ‘Ready’ queue, resulting in context switching. The Process Control

Block of Process 1 is updated with the current values of the Program Counter (PC), Stack pointer, etc. when

the context switch is happened. The Program Counter (PC), Stack pointer, etc. for Process 2 is loaded with

the values stored in the Process Control Block (PCB) of Process 2 and Process 2 continues its execution

form where it was stopped earlier. Process 2 executes the Sleep instruction after 10 units of execution time

and enters the wait state. At this point Process 1 is waiting in the ‘Ready’ queue and it requires 2.5 units of

execution time for completing the task associated with it (The total time for completing the task is 7.5 units

of time, out of this it has already completed 5 units of execution when Process 2 was in the wait state). The

scheduler schedules Process 1 for execution. The Program Counter (PC), Stack pointer, etc. for Process 1 is

 Real-Time Opera ng System (RTOS) based Embedded System Design 431

loaded with the values stored in the Process Control Block (PCB) of Process 1 and Process 1 continues its

execution form where it was stopped earlier. After 2.5 units of execution time, Process 1 executes the Sleep

instruction and enters the wait state. Process 2 is already in the wait state and the scheduler fi nds no other

process for scheduling. In order to keep the CPU always busy, the scheduler runs a dummy process (task)

called ‘IDLE PROCESS (TASK)’. The ‘IDLE PROCESS (TASK)’ executes some dummy task and keeps the

CPU engaged. The execution diagram depicted in Fig. 10.14 explains the sequence of operations.

Process 2 enters Ready state.
Since it is of high priority
compared to Process 1, it
preempts Process 1. The
Process Control Block of
Process 1 is updated with the
current Program Counter (PC)
value, stack pointer value etc...

Time

R

W

P
ro

ce
ss

es

W Waiting

RunningR

R

ReadyRD

Process 2

(High Priority)

Process 1

(Low Priority)

5 20 25 30 40 45

RD

R W R W

R W

R

RD

W

R

R

RD

R W

R

RD

W

R

IDLE TASK

Process 1 & 2 are ready for

execution. Since Process 2 is of

higher priority compared to

Process 1 it is scheduled.

Process 1 remains in the

‘Ready’ queue.

R

100 15

RD

Process 2 enters wait state (Sleep).

Scheduler picks up Process 1 for

execution. The Process Control

Block of Process 2 is updated with

the current Program Counter (PC)

value, stack pointer value etc...

Process 1 enters wait state (Sleep). Process
2 is already in the wait state. No other tasks
available for running. Scheduler schedules a
special task/Process called ‘IDLE
PROCESS/TASK’ for running. The Process
Control Block of Process 1 is updated with
the current Program Counter (PC) value,
stack pointer value etc...

50 55 60 65 70 75 80

Execution Units

Process 2 executes Sleep
instruction and enters wait state.
Scheduler picks up Process 1 for
execution. The Process Control
Block of Process 2 is updated with
the current Program Counter (PC)
value, stack pointer value etc...

R RD

35

Fig. 10.14 Process scheduling and context switch

The implementation of the ‘IDLE PROCESS (TASK)’ is dependent on the kernel and a typical

implementation for a desktop OS may look like. It is simply an endless loop.

void Idle_Process (void)

{

//Simply wait.

//Do nothing...

while(1);

}

The Real-Time kernels deployed in embedded systems, where operating power is a big constraint (like

systems which are battery powered); the ‘IDLE TASK’ is used for putting the CPU into IDLE mode for

saving the power. A typical example is the RTX51 Tiny Real-Time kernel, where the ‘ IDLE TASK’ sets the

8051 CPU to IDLE mode, a power saving mode. In the ‘IDLE’ mode, the program execution is halted and

432 Introduc on to Embedded Systems

all peripherals and the interrupt system continues its operation. Once the CPU is put into the ‘IDLE’ mode,

it comes out of this mode when an Interrupt occurs or when the RTX51 Tiny Timer Tick Interrupt (The

timer interrupt used for task scheduling in Round robin scheduling) occurs. It should be noted that the ‘IDLE

PROCESS (TASK)’ execution is not pre-emptive priority scheduling specifi c, it is applicable to all types of

scheduling policies which demand 100% CPU utilisation/CPU power saving.

Back to the desktop OS environment, let’s analyse the process, threads and scheduling in the Windows

desktop environment. Windows provides a utility called task manager for monitoring the different process

running on the system and the resources used by each process. A snapshot of the process details returned

by the task manager for Windows 10 kernel is shown in Fig. 10.15. It should be noted that this snap- shot

is purely machine dependent and it varies with the number of processes running on the machine. ‘Name’

represents the name of the process. ‘PID’ represents the Process Identifi cation Number (Process ID). As

mentioned in the ‘Threads and Process’ section, when a process is created an ID is associated to it. CPU usage

gives the % of CPU utilised by the process during an interval. ‘CPU Time’ gives the total processor time, in

seconds, used by a process since it started. ‘Working set (memory)’ represents the amount of memory in the

private working set plus the amount of memory the process is using that can be shared by other processes.

‘Commit Size’ represents the amount of virtual memory that’s reserved for use by a process. ‘Paged Pool’

represents the amount of pageable kernel memory allocated by the kernel or drivers on behalf of a process.

Pageable memory is memory that can be written to another storage medium, such as the hard disk. ‘NP

Pool’ is the amount of non-pageable kernel memory allocated by the kernel or drivers on behalf of a process.

Fig. 10.15 Windows 10 Task Manager for monitoring process and resource usage

 Real-Time Opera ng System (RTOS) based Embedded System Design 433

The non-paged memory cannot be swapped to the secondary storage disk. ‘Base Priority’ represents the

priority of the process (A precedence ranking that determines the order in which the threads of a process are

scheduled.). As mentioned in an earlier section, a process may contain multiple threads. The ‘Threads’ section

gives the number of threads running in a process. ‘Handles’ reflects the number of object handles owned by

the process. This value is the reflection of the object handles present in the process’s object table. ‘User

Objects’ reflects the number of objects active in the user mode for a process (A USER object is an object from

Window Manager, which includes windows, menus, cursors, icons, hooks, accelerators, monitors, keyboard

layouts, and other internal objects). Use ‘Ctrl’ + ‘Alt’ + ‘Del’ key for accessing the task manager and select

the ‘Details’ tab. Right click the mouse on the row title header displaying the parameters and choose ‘Select

columns’ option to select the different monitoring parameters for a process.

10.7 TASK COMMUNICATION

In a multitasking system, multiple tasks/processes run concurrently (in pseudo

parallelism) and each process may or may not interact between. Based on the

degree of interaction, the processes running on an OS are classifi ed as

 Co-operating Processes: In the co-operating interaction model one process

requires the inputs from other processes to complete its execution.

 Competing Processes: The competing processes do not share anything among themselves but they share the

system resources. The competing processes compete for the system resources such as fi le, display device,

etc.

Co-operating processes exchanges information and communicate through the following methods.

Co-operation through Sharing: The co-operating process exchange data through some shared resources.

Co-operation through Communication: No data is shared between the processes. But they communicate

for synchronisation.

The mechanism through which processes/tasks communicate each other is known as Inter Process/Task

Communication (IPC). Inter Process Communication is essential for process co-ordination. The various

types of Inter Process Communication (IPC) mechanisms adopted by process are kernel (Operating System)

dependent. Some of the important IPC mechanisms adopted by various kernels are explained below.

10.7.1 Shared Memory

Processes share some area of the memory to

communicate among them (Fig. 10.16). Information

to be communicated by the process is written to the

shared memory area. Other processes which require

this information can read the same from the shared

memory area. It is same as the real world example where ‘Notice Board’ is used by corporate to publish the

public information among the employees (The only exception is; only corporate have the right to modify the

information published on the Notice board and employees are given ‘Read’ only access, meaning it is only a

one way channel).

The implementation of shared memory concept is kernel dependent. Different mechanisms are adopted by

different kernels for implementing this. A few among them are:

LO 7 Identify
the RPC based
Inter Process
Communication

Shared

memory area
Process 2Process 1

Fig. 10.16 Concept of Shared Memory

434 Introduc on to Embedded Systems

10.7.1.1  Pipes
‘Pipe’ is a section of the shared memory used by processes for communicating. Pipes follow the client-server‡

architecture. A process which creates a pipe is known as a pipe server and a process which connects to a pipe is

known as pipe client. A pipe can be considered as a conduit for information fl ow and has two conceptual ends.

It can be unidirectional, allowing information fl ow in one direction or bidirectional allowing bi-directional

information fl ow. A unidirectional pipe allows the process connecting at one end of the pipe to write to the

pipe and the process connected at the other end of the pipe to read the data, whereas a bi-directional pipe

allows both reading and writing at one end. The unidirectional pipe can be visualised as

Pipe

(Named/un-named)

Process 1

Write

Process 2

Read

Fig. 10.17 Concept of Pipe for IPC

The implementation of ‘Pipes’ is also OS dependent. Microsoft® Windows Desktop Operating Systems

support two types of ‘Pipes’ for Inter Process Communication. They are:

 Anonymous Pipes: The anonymous pipes are unnamed, unidirectional pipes used for data transfer between

two processes.

 Named Pipes: Named pipe is a named, unidirectional or bi-directional pipe for data exchange between

processes. Like anonymous pipes, the process which creates the named pipe is known as pipe server. A

process which connects to the named pipe is known as pipe client. With named pipes, any process can act as

both client and server allowing point-to-point communication. Named pipes can be used for communicating

between processes running on the same machine or between processes running on different machines

connected to a network.

Please refer to the Online Learning Centre for details on the Pipe implementation under Windows

Operating Systems.

Under VxWorks kernel, pipe is a special implementation of message queues. We will discuss the same in

a latter chapter.

10.7.1.2  Memory Mapped Objects
Memory mapped object is a shared memory technique adopted by certain Real-Time Operating Systems

for allocating a shared block of memory which can be accessed by multiple process simultaneously (of

course certain synchronisation techniques should be applied to prevent inconsistent results). In this approach

a mapping object is created and physical storage for it is reserved and committed. A process can map the

entire committed physical area or a block of it to its virtual address space. All read and write operation to

this virtual address space by a process is directed to its committed physical area. Any process which wants to

share data with other processes can map the physical memory area of the mapped object to its virtual memory

space and use it for sharing the data.

Windows Embedded Compact RTOS uses the memory mapped object based shared memory

technique for Inter Process Communication (Fig. 10.18). The CreateFileMapping (HANDLE hFile,

LPSECURITY_ATTRIBUTES lpFileMappingAttributes, DWORD fl Protect, DWORD dwMaximumSizeHigh,

‡Client Server is a software architecture containing a client application and a server application. The application which sends request is

known as client and the application which receives the request process it and sends a response back to the client is known as server. A

server is capable of receiving request from multiple clients.

 Real-Time Opera ng System (RTOS) based Embedded System Design 435

Fig. 10.18 Concept of memory mapped object

DWORD dwMaximumSizeLow, LPCTSTR lpName) system call is used for sharing the memory. This API call

is used for creating a mapping from a fi le. In order to create the mapping from the system paging memory,

the handle parameter should be passed as INVALID_HANDLE_VALUE (–1). The lpFileMappingAttributes

parameter represents the security attributes and it must be NULL. The fl Protect parameter represents the

read write access for the shared memory area. A value of PAGE_READONLY makes the shared memory read

only whereas the value PAGE_READWRITE gives read-write access to the shared memory. The parameter

dwMaximumSizeHigh specifi es the higher order 32 bits of the maximum size of the memory mapped object

and dwMaximumSizeLow specifi es the lower order 32 bits of the maximum size of the memory mapped

object. The parameter lpName points to a null terminated string specifying the name of the memory mapped

object. The memory mapped object is created as unnamed object if the parameter lpName is NULL. If lpName

specifi es the name of an existing memory mapped object, the function returns the handle of the existing

memory mapped object to the caller process. The memory mapped object can be shared between the processes

by either passing the handle of the object or by passing its name. If the handle of the memory mapped object

created by a process is passed to another process for shared access, there is a possibility of closing the handle

by the process which created the handle while it is in use by another process. This will throw OS level

exceptions. If the name of the memory object is passed for shared access among processes, processes can use

this name for creating a shared memory object which will open the shared memory object already existing

with the given name. The OS will maintain a usage count for the named object and it is incremented each time

when a process creates/opens a memory mapped object with existing name. This will prevent the destruction

of a shared memory object by one process while it is being accessed by another process. Hence passing the

name of the memory mapped object is strongly recommended for memory mapped object based inter process

communication. The MapViewOfFile (HANDLE hFileMappingObject DWORD dwDesiredAccess, DWORD

dwFileOffsetHigh, DWORD dwFileOffsetLow, DWORD dwNumberOfBytesToMap) system call maps a view

of the memory mapped object to the address space of the calling process. The parameter hFileMappingObject

specifi es the handle to an existing memory mapped object. The dwDesiredAccess parameter represents the

read write access for the mapped view area. A value of FILE_MAP_WRITE makes the view access read-

write, provided the memory mapped object hFileMappingObject is created with read-write access, whereas

436 Introduc on to Embedded Systems

the value FILE_MAP_READ gives read only access to the shared memory, provided the memory mapped

object hFileMappingObject is created with read-write/read only access. The parameter dwFileOffsetHigh

specifi es the higher order 32 bits and dwFileOffsetLow specifi es the lower order 32 bits of the memory offset

where mapping is to begin from the memory mapped object. A value of ‘0’ for both of these maps the view

from the beginning memory area of the memory object. dwNumberOfBytesToMap specifi es the number of

bytes of the memory object to map. If dwNumberOfBytesToMap is zero, the entire memory area owned by the

memory mapped object is mapped. On successful execution, MapViewOfFile call returns the starting address

of the mapped view. If the function fails it returns NULL. A mapped view of the memory mapped object is

unmapped by the API call UnmapViewOfFile (LPCVOID lpBaseAddress). The lpBaseAddress parameter

specifi es a pointer to the base address of the mapped view of a memory object that is to be unmapped. This

value must be identical to the value returned by a previous call to the MapViewOfFile function. Calling

UnmapViewOfFile cleans up the committed physical storage in a process’s virtual address space. In other

words, it frees the virtual address space of the mapping object. Under Windows NT Kernel, a process can

open an existing memory mapped object by calling the API OpenFileMapping(DWORD dwDesiredAccess,

BOOL bInheritHandle, LPCTSTR lpName). The parameter dwDesiredAccess specifi es the read write access

permissions for the memory mapped object. A value of FILE_MAP_ALL_ACCESS provides read-write

access, whereas the value FILE_MAP_READ allocates only read access and FILE_MAP_WRITE allocates

write only access. The parameter bInheritHandle specifi es the handle inheritance. If this parameter is TRUE,

the calling process inherits the handle of the existing object, otherwise not. The parameter lpName specifi es

the name of the existing memory mapped object which needs to be opened. Windows CE 5.0 does not support

handle inheritance and hence the API call OpenFileMapping is not supported.

The following sample code illustrates the creation and accessing of memory mapped objects across

multiple processes. The fi rst piece of code illustrates the creation of a memory mapped object with name

“memorymappedobject” and prints the address of the memory location where the memory is mapped within

the virtual address space of Process 1.

##include “stdafx.h”

#include <stdio.h>

#include <windows.h>

//***

//Process 1: Creates the memory mapped object and maps it to

//Process 1’s Virtual Address space

//***

void main() {

 //Defi ne the handle to Memory mapped Object

 HANDLE hFileMap;

 //Defi ne the handle to the view of Memory mapped Object

 LPBYTE hMapView;

 printf(“//**\n”);

 printf(“ Process 1\n”);

 printf(“//**\n”);

 //Create an 8 KB memory mapped object

 hFileMap = CreateFileMapping((HANDLE)-1,

 NULL, // default security attributes

 PAGE_READWRITE, // Read-Write Access

 0, //Higher order 32 bits of the memory mapping object

 0x2000, //Lower order 32 bits of the memory mapping object

 Real-Time Opera ng System (RTOS) based Embedded System Design 437

 TEXT(“memorymappedobject”)); // Memory mapped object name

 if (NULL == hFileMap)

 {

 printf(“Memory mapped Object Creation Failed : Error Code : %d\n”,

GetLastError());

 //Memory mapped Object Creation failed. Return

 return;

 }

 //Map the memory mapped object to Process 1’s address space

 hMapView = (LPBYTE)MapViewOfFile(hFileMap,

 FILE_MAP_WRITE,

 0, //Map the entire view

 0,

 0);

 if (NULL == hMapView)

 {

 printf(“Mapping of Memory mapped view Failed : Error Code :%d\n”,

GetLastError());

 //Memory mapped view Creation failed. Return

 return;

 }

 else

 {

 //Successfully created the memory mapped view.

 //Print the start address of the mapped view

 printf(“The memory is mapped to the virtual address starting at 0x%p\n”,

 (void *)hMapView);

 }

 //Wait for user input to exit. Run Process 2 before providing

 //user input

 printf(“Press any key to terminate Process 1”);

 getchar();

 //Unmap the view

 UnmapViewOfFile(hMapView);

 //Close memory mapped object handle

 CloseHandle(hFileMap);

 return;

}

The piece of code given below corresponds to Process 2. It illustrates the accessing of an existing memory

mapped object (memory mapped object with name “memorymappedobject” created by Process 1) and prints

the address of the memory location where the memory is mapped within the virtual address space of Process

2. To demonstrate the application, the program corresponding to Process 1 should be executed fi rst and the

program corresponding to Process 2 should be executed following Process 1.

#include “stdafx.h”

#include <stdio.h>

438 Introduc on to Embedded Systems

#include <windows.h>

//***

//Process 2: Opens the memory mapped object created by Process 1

//Maps the object to Process 2’s virtual address space.

//***

void main() {

 //Defi ne the handle for the Memory mapped Object

 HANDLE hChildFileMap;

 //Defi ne the handle for the view of Memory mapped Object

 LPBYTE hChildMapView;

 printf(“//**\n”);

 printf(“ Process 2\n”);

 printf(“//**\n”);

 //Create an 8 KB memory mapped object

 hChildFileMap = CreateFileMapping(INVALID_HANDLE_VALUE,

 NULL, // default security attributes

 PAGE_READWRITE, // Read-Write Access

 0, //Higher order 32 bits of the memory mapping object

 0x2000, //Lower order 32 bits of the memory mapping object

 TEXT(“memorymappedobject”)); // Memory mapped object name

 if ((NULL == hChildFileMap) || (INVALID_HANDLE_VALUE == hChildFileMap))

 {

 printf(“Memory mapped Object Creation Failed : Error Code : %d\n”,

GetLastError());

 //Memory mapped Object Creation failed. Return

 return;

 }

 else if (ERROR_ALREADY_EXISTS == GetLastError())

 {

 //A memory mapped object with given name exists already.

 printf(“The named memory mapped object is already existing\n”);

 }

 //Map the memory mapped object to Process 2’s address space

 hChildMapView = (LPBYTE) MapViewOfFile(hChildFileMap,

 FILE_MAP_WRITE, //Read-Write access

 0,

 //Map the entire view

 0,

 0);

 if (NULL == hChildMapView)

 {

 printf(“Mapping of Memory mapped view Failed : Error Code : %d\n”,

GetLastError());

 //Memory mapped view Creation failed. Return

 return;

 }

 Real-Time Opera ng System (RTOS) based Embedded System Design 439

else

 {

 //Successfully created the memory mapped view.

 //Print the start address of the mapped view

 printf(“The memory mapped view starts at memory location 0x%p\n”,

 (void *) hChildMapView);

 }

 //Wait for user input to exit.

 printf(“Press any key to terminate Process 2”);

 getchar();

 //Unmap the view

 UnmapViewOfFile(hChildMapView);

 //Close memory mapped object handle

 CloseHandle(hChildFileMap);

 return;

}

The output of the above programs when executed on Windows 10 OS in the sequence, Process 1 is

executed fi rst and Process 2 is executed while Process 1 waits for the user input from the keyboard, is given

in Fig. 10.19.

Fig. 10.19 Output of Win32 memory mapped object illustration program

The starting address of the memory mapped view in the virtual address space of the process is decided

by the OS. However a process can request to map the view at a desired virtual address by using the

MapViewofFileEx function. Depending on the availability of the address space the OS may grand the request

or not. It is always safe to let the OS choose the address.

440 Introduc on to Embedded Systems

Reading and writing to a memory mapped area is same as any read write operation using pointers. The

pointer returned by the API call MapViewOfFile can be used for this. The exercise of Read and Write operation

is left to the readers. Proper care should be taken to avoid any confl icts that may arise due to the simultaneous

read/write access of the shared memory area by multiple processes. This can be handled by applying various

synchronisation techniques like events, mutex, semaphore, etc.

For using a memory mapped object across multiple threads of a process, it is not required for all the threads

of the process to create/open the memory mapped object and map it to the thread’s virtual address space.

Since the thread’s address space is part of the process’s virtual address space, which contains the thread, only

one thread, preferably the parent thread (main thread) is required to create the memory mapped object and

map it to the process’s virtual address space. The thread which creates the memory mapped object can share

the pointer to the mapped memory area as global pointer and other threads of the process can use this pointer

for reading and writing to the mapped memory area. If one thread of a process tries to create a memory

mapped object with the same name as that of an existing mapping object, which is created by another thread

of the same process, a new view of the mapping object is created at a different virtual address of the process.

This is same as one process trying to create two views of the same memory mapped object☺.

10.7.2 Message Passing

Message passing is an (a)synchronous information exchange mechanism used for Inter Process/Thread

Communication. The major difference between shared memory and message passing technique is that, through

shared memory lots of data can be shared whereas only limited amount of info/data is passed through message

passing. Also message passing is relatively fast and free from the synchronisation overheads compared to

shared memory. Based on the message passing operation between the processes, message passing is classifi ed

into

10.7.2.1  Message Queue
Usually the process which wants to talk to another process posts the message to a First-In-First-Out (FIFO)

queue called ‘Message queue’, which stores the messages temporarily in a system defi ned memory object,

to pass it to the desired process (Fig. 10.20). Messages are sent and received through send (Name of the

process to which the message is to be sent, message) and receive (Name of the process from which the

message is to be received, message) methods. The messages are exchanged through a message queue. The

implementation of the message queue, send and receive methods are OS kernel dependent. The Windows XP

OS kernel maintains a single system message queue and one process/thread (Process and threads are used

interchangeably here, since thread is the basic unit of process in windows) specifi c message queue. A thread

which wants to communicate with another thread posts the message to the system message queue. The kernel

picks up the message from the system message queue one at a time and examines the message for fi nding

the destination thread and then posts the message to the message queue of the corresponding thread. For

posting a message to a thread’s message queue, the kernel fi lls a message structure MSG and copies it to the

message queue of the thread. The message structure MSG contains the handle of the process/thread for which

the message is intended, the message parameters, the time at which the message is posted, etc. A thread can

simply post a message to another thread and can continue its operation or it may wait for a response from

the thread to which the message is posted. The messaging mechanism is classifi ed into synchronous and

asynchronous based on the behaviour of the message posting thread. In asynchronous messaging, the message

posting thread just posts the message to the queue and it will not wait for an acceptance (return) from the

thread to which the message is posted, whereas in synchronous messaging, the thread which posts a message

enters waiting state and waits for the message result from the thread to which the message is posted. The

thread which invoked the send message becomes blocked and the scheduler will not pick it up for scheduling.

 Real-Time Opera ng System (RTOS) based Embedded System Design 441

The PostMessage (HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam) or PostThreadMessage

(DWORD idThread, UINT Msg, WPARAM wParam, LPARAM lParam) API is used by a thread in Windows

for posting a message to its own message queue or to the message queue of another thread. PostMessage

places a message at the end of a thread’s message queue and returns immediately, without waiting for the

thread to process the message. The function’s parameters include a window handle, a message identifi er, and

two message parameters. The system copies these parameters to an MSG structure, and places the structure in

the message queue. The PostThreadMessage is similar to PostMessage, except the fi rst parameter is a thread

identifi er and it is used for posting a message to a specifi c thread message queue. The SendMessage (HWND

hWnd, UINT Msg, WPARAM wParam, LPARAM lParam) API call sends a message to the thread specifi ed

by the handle hWnd and waits for the callee thread to process the message. The thread which calls the

SendMessage API enters waiting state and waits for the message result from the thread to which the message

is posted. The thread which invoked the SendMessage API call becomes blocked and the scheduler will not

pick it up for scheduling.

Process 1 Process 2

S
en

d
m

es
sa

ge

Message Queue

R
eceive m

essage

Fig. 10.20 Concept of message queue based indirect messaging for IPC

The Windows Embedded Compact operating system supports a special Point-to-Point Message queue

implementation. The OS maintains a First In First Out (FIFO) buffer for storing the messages and each

process can access this buffer for reading and writing messages. The OS also maintains a special queue, with

single message storing capacity, for storing high priority messages (Alert messages). The creation and usage

of message queues under Windows Embedded Compact OS is explained below.

The CreateMsgQueue(LPCWSTR lpszName, LPMSGQUEUEOPTIONS lpOptions) API call creates a

message queue or opens a named message queue and returns a read only or write only handle to the message

queue. A process can use this handle for reading or writing a message from/to of the message queue pointed

by the handle. The parameter lpszName specifi es the name of the message queue. If this parameter is NULL,

an unnamed message queue is created. Processes can use the handle returned by the API call if the message

queue is created without any name. If the message queue is created as named message queue, other processes

can use the name of the message queue for opening the named message queue created by a process. Calling

the CreateMsgQueue API with an existing named message queue as parameter returns a handle to the existing

message queue. Under the Desktop Windows Operating Systems (Windows NT Kernel – Windows XP,

Windows 8.1/10, etc.), each object type (viz. mutex, semaphores, events, memory maps, watchdog timers

442 Introduc on to Embedded Systems

and message queues) share the same namespace and the same name is not allowed for creating any of this.

Windows CE/Embedded Compact kernel maintains separate namespace for each and supports the same

name across different objects. The lpOptions parameter points to a MSGQUEUEOPTIONS structure that

sets the properties of the message queue. The member details of the MSGQUEUEOPTIONS structure is

explained below.

typedef MSGQUEUEOPTIONS_OS{

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwMaxMessages;

 DWORD cbMaxMessage;

 BOOL bReadAccess;

} MSGQUEUEOPTIONS, FAR* LPMSGQUEUEOPTIONS, *PMSGQUEUEOPTIONS;

The members of the structure are listed below.

Member Description

dwSize Specifi es the size of the structure in bytes

dwFlags Describes the behaviour of the message queue. Set to MSGQUEUE_NOPRECOMMIT to al-

locate message buffers on demand and to free the message buffers after they are read, or set to

MSGQUEUE_ALLOW_BROKEN to enable a read or write operation to complete even if there

is no corresponding writer or reader present.

dwMaxMessages Specifi es the maximum number of messages to queue at any point of time. Set this value to zero

to specify no limit on the number of messages to queue at any point of time.

cbMaxMessage Specifi es the maximum number of bytes in each message. This value must be greater than zero.

bReadAccess Specifi es the Read Write access to the message queue. Set to TRUE to request read access to the

queue. Set to FALSE to request write access to the queue.

On successful execution, the CreateMsgQueue API call returns a ‘Read Only’ or ‘Write Only’ handle to

the specifi ed queue based on the bReadAccess member of the MSGQUEUEOPTIONS structure lpOptions.

If the queue with specifi ed name already exists, a new handle, which points to the existing queue, is created

and a following call to GetLastError returns ERROR_ALREADY_EXISTS. If the function fails it returns

NULL. A single call to the CreateMsgQueue creates the queue for either ‘read’ or ‘write’ access. The

CreateMsgQueue API should be called twice with the bReadAccess member of the MSGQUEUEOPTIONS

structure lpOptions set to TRUE and FALSE respectively in successive calls for obtaining ‘Read only’

and ‘Write only’ handles to the specifi ed message queue. The handle returning by CreateMsgQueue API

call is an event handle and, if it is a ‘Read Only’ access handle, it is signalled by the message queue if a

new message is placed in the queue. The signal is reset on reading the message by ReadMsgQueue API

call. A ‘Write Only’ access handle to the message queue is signalled when the queue is no longer full, i.e.

when there is room for accommodating new messages. Processes can monitor the handles with the help of

the wait functions, viz. WaitForSingleObject or WaitForMultipleObjects. The OpenMsgQueue(HANDLE

hSrcProc, HANDLE hMsgQ, LPMSGQUEUEOPTIONS lpOptions) API call opens an existing named or

unnamed message queue. The parameter hSrcProc specifi es the process handle of the process that owns the

message queue and hMsgQ specifi es the handle of the existing message queue (Handle to the message queue

returned by the CreateMsgQueue function). As in the case of CreateMsgQueue, the lpOptions parameter

points to a MSGQUEUEOPTIONS structure that sets the properties of the message queue. On successful

execution the OpenMsgQueue API call returns a handle to the message queue and NULL if it fails. Normally

 Real-Time Opera ng System (RTOS) based Embedded System Design 443

the OpenMsgQueue API is used for opening an unnamed message queue. The WriteMsgQueue(HANDLE

hMsgQ, LPVOID lpBuffer, DWORD cbDataSize, DWORD dwTimeout, DWORD dwFlags) API call is used

for writing a single message to the message queue pointed by the handle hMsgQ. lpBuffer points to a buffer

that contains the message to be written to the message queue. The parameter cbDataSize specifi es the number

of bytes stored in the buffer pointed by lpBuffer, which forms a message. The parameter dwTimeout specifi es

the timeout interval in milliseconds for the message writing operation. A value of zero specifi es the write

operation to return immediately without blocking if the write operation cannot succeed. If the parameter is

set to INFINITE, the write operation will block until it succeeds or the message queue signals the ‘write only’

handle indicating the availability of space for posting a message. The dwFlags parameter sets the priority of

the message. If it is set to MSGQUEUE_MSGALERT, the message is posted to the queue as high priority or

alert message. The Alert message is always placed in the front of the message queue. This function returns

TRUE if it succeeds and FALSE otherwise.

The ReadMsgQueue(HANDLE hMsgQ, LPVOID lpBuffer, DWORD cbBufferSize, LPDWORD

lpNumberOfBytesRead, DWORD dwTimeout, DWORD* pdwFlags) API reads a single message from the

message queue. The parameter hMsgQ specifi es a handle to the message queue from which the message

needs to be read. lpBuffer points to a buffer for storing the message read from the queue. The parameter

cbBufferSize specifi es the size of the buffer pointed by lpBuffer, in bytes. lpNumberOfBytesRead specifi es

the number of bytes stored in the buffer. This is same as the number of bytes present in the message which

is read from the message queue. dwTimeout specifi es the timeout interval in milliseconds for the message

reading operation. The timeout values and their meaning are same as that of the write message timeout

parameter. The dwFlags parameter indicates the priority of the message. If the message read from the

message queue is a high priority message (alert message), dwFlags is set to MSGQUEUE_MSGALERT.

The function returns TRUE if it succeeds and FALSE otherwise. The GetMsgQueueInfo (HANDLE hMsgQ,

LPMSGQUEUEINFO lpInfo) API call returns the information about a message queue specifi ed by the handle

hMsgQ. The message information is returned in a MSGQUEUEINFO structure pointed by lpInfo. The details

of the MSGQUEUEINFO structure is explained below.

typedef MSGQUEUEINFO{

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwMaxMessages;

 DWORD cbMaxMessage;

 DWORD dwCurrentMessages;

 DWORD dwMaxQueueMessages;

 WORD wNumReaders;

 WORD wNumWriters;

} MSGQUEUEINFO, *PMSGQUEUEINFO, FAR* LPMSGQUEUEINFO;

The member variable details are listed below.

Member Description

DwSize Specifi es the size of the buffer passed in.

dwFlags Describes the behaviour of the message queue. It retrieves the MSGQUEUEOPTIONS.

dwFlags passed when the message queue is created with CreateMsgQueue API call.

dwMaxMessages Specifi es the maximum number of messages to queue at any point of time. This refl ects

the MSGQUEUEOPTIONS. dwMaxMessages value passed when the message queue is

created with CreateMsgQueue API call.

444 Introduc on to Embedded Systems

cbMaxMessage Specifi es the maximum number of bytes in each message. This refl ects the MSGQUEUEOP-

TIONS.cbMaxMessage value passed when the message queue is created with CreateMs-

gQueue API call.

dwCurrentMessages Specifi es the number of messages currently existing in the specifi ed message queue.

dwMaxQueueMessages Specifi es maximum number of messages that have ever been in the queue at one time.

wNumReaders Specifi es the number of readers (processes which opened the message queue for read-

ing) subscribed to the message queue for reading.

wNumWriters Specifi es the number of writers (processes which opened the message queue for writing)

subscribed to the message queue for writing.

The GetMsgQueueInfo API call returns TRUE if it succeeds and FALSE otherwise. The

CloseMsgQueue(HANDLE hMsgQ) API call closes a message queue specifi ed by the handle hMsgQ. If a

process holds a ‘read only’ and ‘write only’ handle to the message queue, both should be closed for closing

the message queue.

‘Message queue’ is the primary inter-task communication mechanism under VxWorks kernel. Message

queues support two-way communication of messages of variable length. The two-way messaging between

tasks can be implemented using one message queue for incoming messages and another one for outgoing

messages. Messaging mechanism can be used for task-to task and task to Interrupt Service Routine (ISR)

communication. We will discuss about the VxWorks’ message queue implementation in a separate chapter.

10.7.2.2 Mailbox
 Mailbox is an alternate form of ‘Message queues’ and it is used in certain Real-Time Operating Systems

for IPC. Mailbox technique for IPC in RTOS is usually used for one way messaging. The task/thread which

wants to send a message to other tasks/threads creates a mailbox for posting the messages. The threads which

are interested in receiving the messages posted to the mailbox by the mailbox creator thread can subscribe

to the mailbox. The thread which creates the mailbox is known as ‘mailbox server’ and the threads which

subscribe to the mailbox are known as ‘mailbox clients’. The mailbox server posts messages to the mailbox

and notifi es it to the clients which are subscribed to the mailbox. The clients read the message from the

mailbox on receiving the notifi cation. The mailbox creation, subscription, message reading and writing are

achieved through OS kernel provided API calls. Mailbox and message queues are same in functionality. The

only difference is in the number of messages supported by them. Both of them are used for passing data

in the form of message(s) from a task to another task(s). Mailbox is used for exchanging a single message

between two tasks or between an Interrupt Service Routine (ISR) and a task. Mailbox associates a pointer

pointing to the mailbox and a wait list to hold the tasks waiting for a message to appear in the mailbox. The

implementation of mailbox is OS kernel dependent. The MicroC/OS-II implements mailbox as a mechanism

for inter-task communication. We will discuss about the mailbox based IPC implementation under MicroC/

OS-II in a latter chapter. Figure 10.21 given below illustrates the mailbox based IPC technique.

10.7.2.3  Signalling
Signalling is a primitive way of communication between processes/threads. Signals are used for asynchronous

notifi cations where one process/thread fi res a signal, indicating the occurrence of a scenario which the other

process(es)/thread(s) is waiting. Signals are not queued and they do not carry any data. The communication

mechanisms used in RTX51 Tiny OS is an example for Signalling. The os_send_signal kernel call under

RTX 51 sends a signal from one task to a specifi ed task. Similarly the os_wait kernel call waits for a specifi ed

signal. Refer to the topic ‘Round Robin Scheduling’ under the section ‘Priority based scheduling’ for more

details on Signalling in RTX51 Tiny OS. The VxWorks RTOS kernel also implements ‘signals’ for inter

 Real-Time Opera ng System (RTOS) based Embedded System Design 445

process communication. Whenever a specifi ed signal occurs it is handled in a signal handler associated with

the signal. We will discuss about the signal based IPC mechanism for VxWorks’ kernel in a later chapter.

Task 1

P
o
st m

essag
e

Task 2 Task 3 Task 4

B
ro

ad
ca

st
 m

es
sa

ge
B

roadcast m
essage

B
ro

ad
cast m

essag
e

Mail box

Fig. 10.21 Concept of Mailbox based indirect messaging for IPC

10.7.3 Remote Procedure Call (RPC) and Sockets

 Remote Procedure Call or RPC (Fig. 10.22) is the Inter Process Communication (IPC) mechanism used

by a process to call a procedure of another process running on the same CPU or on a different CPU which

is interconnected in a network. In the object oriented language terminology RPC is also known as Remote

Invocation or Remote Method Invocation (RMI). RPC is mainly used for distributed applications like client-

server applications. With RPC it is possible to communicate over a heterogeneous network (i.e. Network where

Client and server applications are running on different Operating systems). The CPU/process containing the

procedure which needs to be invoked remotely is known as server. The CPU/process which initiates an RPC

request is known as client.

It is possible to implement RPC communication with different invocation interfaces. In order to make the

RPC communication compatible across all platforms it should stick on to certain standard formats. Interface

 Defi nition Language (IDL) defi nes the interfaces for RPC. Microsoft Interface Defi nition Language (MIDL)

is the IDL implementation from Microsoft for all Microsoft platforms. The RPC communication can be

either Synchronous (Blocking) or Asynchronous (Non-blocking). In the Synchronous communication, the

process which calls the remote procedure is blocked until it receives a response back from the other process.

In asynchronous RPC calls, the calling process continues its execution while the remote process performs

446 Introduc on to Embedded Systems

CPU CPU
Network

Process 1 Process 2

ProcessProcess

Procedure

Procedure

CPU

TCP/IP or UDP

TCP/IP or UDP

Over Socket

Over Socket

Processes running on different CPUs which are networked

Processes running on same CPU

Fig. 10.22 Concept of Remote Procedure Call (RPC) for IPC

the execution of the procedure. The result from the remote procedure is returned back to the caller through

mechanisms like callback functions.

On security front, RPC employs authentication mechanisms to protect the systems against vulnerabilities.

The client applications (processes) should authenticate themselves with the server for getting access.

Authentication mechanisms like IDs, public key cryptography (like DES, 3DES), etc. are used by the client

for authentication. Without authentication, any client can access the remote procedure. This may lead to

potential security risks.

 Sockets are used for RPC communication. Socket is a logical endpoint in a two-way communication

link between two applications running on a network. A port number is associated with a socket so that the

network layer of the communication channel can deliver the data to the designated application. Sockets are

of different types, namely, Internet sockets (INET), UNIX sockets, etc. The INET socket works on internet

communication protocol. TCP/IP, UDP, etc. are the communication protocols used by INET sockets. INET

sockets are classifi ed into:

 1. Stream sockets

 2. Datagram sockets

Stream sockets are connection oriented and they use TCP to establish a reliable connection. On the other

hand, Datagram sockets rely on UDP for establishing a connection. The UDP connection is unreliable when

compared to TCP. The client-server communication model uses a socket at the client side and a socket at

the server side. A port number is assigned to both of these sockets. The client and server should be aware

of the port number associated with the socket. In order to start the communication, the client needs to send

a connection request to the server at the specifi ed port number. The client should be aware of the name of

the server along with its port number. The server always listens to the specifi ed port number on the network.

Upon receiving a connection request from the client, based on the success of authentication, the server grants

the connection request and a communication channel is established between the client and server. The client

 Real-Time Opera ng System (RTOS) based Embedded System Design 447

uses the host name and port number of server for sending requests and server uses the client’s name and port

number for sending responses.

If the client and server applications (both processes) are running on the same CPU, both can use the same

host name and port number for communication. The physical communication link between the client and

server uses network interfaces like Ethernet or Wi-Fi for data communication. The underlying implementation

of socket is OS kernel dependent. Different types of OSs provide different socket interfaces. The following

sample code illustrates the usage of socket for creating a client application under Windows OS. Winsock

(Windows Socket 2) is the library implementing socket functions for Win32.

#include “stdafx.h”
#include <stdio.h>
#include <winsock2.h>
#include <Ws2tcpip.h>
//Specify the server address
#defi ne SERVER “172.168.0.1”
//Specify the server port
#defi ne PORT 5000
#pragma comment(lib, “Ws2_32.lib”)
const int recvbufl en = 100;
char *sendbuf = “Hi from Client”;
char recvbuffer[recvbufl en];

void main() {
 //***
 // Initialise Winsock
 WSADATA wsaData;
 if (WSAStartup(MAKEWORD(2, 2), &wsaData) == NO_ERROR)
 printf(“Winsock Initialisation succeeded...\n”);
 else
 {
 printf(“Winsock Initialisation failed...\n”);
 return;
 }
 //***
 // Create a SOCKET for connecting to server
 SOCKET MySocket;
 MySocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 if (MySocket == INVALID_SOCKET)
 {
 printf(“Socket Creation failed...\n”);
 WSACleanup();
 return;
 }
 else
 {
 printf(“Successfully created the socket...\n”);
 //***
 // Set the Socket type, IP address and port of the server
 sockaddr_in ServerParams;

 ServerParams.sin_family = AF_INET;

448 Introduc on to Embedded Systems

 //ServerParams.sin_addr.s_addr = inet_addr(SERVER);

 if (inet_pton(AF_INET, SERVER, &(ServerParams.sin_addr)) != 1)

 {

 printf(“Converting IP Address failed...\n”);

 WSACleanup();

 return;

 }

 ServerParams.sin_port = htons(PORT);

 //***

 // Connect to server.

 if (connect(MySocket, (SOCKADDR*)& ServerParams, sizeof(ServerParams)) ==

SOCKET_ERROR)

 {

 printf(“Connecting to Server failed...Error code: %d\n”, GetLastError());

 WSACleanup();

 return;

 }

 else

 {

 printf(“Successfully Connected to the server...\n”);

 //***

 // Send command to server

 if (send(MySocket, sendbuf, (int)strlen(sendbuf), 0) == SOCKET_ERROR) {

 printf(“Sending data to server failed...\n”);

 closesocket(MySocket);

 WSACleanup();

 return;

 }

 else

 {

 printf(“Successfully sent command to server...\n”);

 //***

 // Receive a data packet

 if (recv(MySocket, recvbuffer, recvbufl en, 0) > 0)

 printf(“Successfully Received a packet...\n The received packet is %s\n”,

 recvbuffer);

 else

 printf(“No response from server...\n”);

 //***

 //Close Socket

 closesocket(MySocket);

 WSACleanup();

 return;

 }

 }

 }

 getchar();

}

 Real-Time Opera ng System (RTOS) based Embedded System Design 449

The above application tries to connect to a server machine with IP address 172.168.0.1 and port number

5000. Change the values of SERVER and PORT to connect to a machine with different IP address and port

number. If the connection is success, it sends the data “Hi from Client” to the server and waits for a response

from the server and fi nally terminates the connection.

Under Windows, the socket function library Winsock should be initiated before using the socket related

functions. The function WSAStartup performs this initiation. The socket() function call creates a socket. The

socket type, connection type and protocols for communication are the parameters for socket creation. Here

the socket type is INET (AF_INET) and connection type is stream socket (SOCK_STREAM). The protocol

selected for communication is TCP/IP (IPPROTO_TCP). After creating the socket it is connected to a server.

For connecting to server, the server address and port number should be indicated in the connection request.

The sockaddr_in structure specifi es the socket type, IP address and port of the server to be connected to. The

connect () function connects the socket with a specifi ed server. If the server grants the connection request, the

connect () function returns success. The send() function is used for sending data to a server. It takes the socket

name and data to be sent as parameters. Data from server is received using the function call recv(). It takes the

socket name and details of buffer to hold the received data as parameters. The TCP/IP network stack expects

network byte order (Big Endian: Higher order byte of the data is stored in lower memory address location)

for data. The function htons() converts the byte order of an unsigned short integer to the network order. The

closesocket() function closes the socket connection. On the server side, the server creates a socket using the

function socket() and binds the socket with a port using the bind() function. It listens to the port bonded to the

socket for any incoming connection request. The function listen() performs this. Upon receiving a connection

request, the server accepts it. The function accept() performs the accepting operation. Now the connectivity is

established. Server can receive and transmit data using the function calls recv() and send() respectively. The

implementation of the server application is left to the readers as an exercise.

10.8 TASK SYNCHRONISATION

In a multitasking environment, multiple processes run concurrently (in pseudo

parallelism) and share the system resources. Apart from this, each process has

its own boundary wall and they communicate with each other with different IPC

mechanisms including shared memory and variables. Imagine a situation where

two processes try to access display hardware connected to the system or two

processes try to access a shared memory area where one process tries to write to a

memory location when the other process is trying to read from this. What could be the result in these scenarios?

Obviously unexpected results. How these issues can be addressed? The solution is, make each process aware

of the access of a shared resource either directly or indirectly. The act of making processes aware of the

access of shared resources by each process to avoid confl icts is known as ‘Task/ Process Synchronisation’.

Various synchronisation issues may arise in a multitasking environment if processes are not synchronised

properly. The following sections describe the major task communication synchronisation issues observed in

multitasking and the commonly adopted synchronisation techniques to overcome these issues.

10.8.1 Task Communication/Synchronisation Issues

10.8.1.1  Racing
Let us have a look at the following piece of code:

#include “stdafx.h”

#include <windows.h>

LO 8 State the
need for task
synchronisation
in a multitasking
environment

