

(AUTONOMOUS)

I B.Tech I Semester Regular & Supple. Examinations, December-2024

Sub Code: R23CC1101

LINEAR ALGEBRA & CALCULUS

Time: 3 hours

(Common to All Branches)

Max. Marks: 70

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answering all the questions from Part-A is compulsory ($10 \times 2M = 20M$)

Q.No		Answering all the questions from Part-A is compulsory (10 x 2M = 20M) Questions	KL	CO	M
Q.140	a	If A, B and C are the angles of a non-right angled triangle ABC, then find the	К3	CO1	2M
	b	value of $\begin{vmatrix} 1 & 1 & \tan C \end{vmatrix}$. $\begin{vmatrix} x^2 - 4x & x^2 \end{vmatrix} = \begin{bmatrix} -3 & 1 \end{vmatrix}$	K2	CO1	2M
	c	If $\begin{bmatrix} x^2 & x^3 \end{bmatrix} = \begin{bmatrix} -x+2 & 1 \end{bmatrix}$, then the value of x? Given an eigen value of a matrix A, write the eigen values of following matrices: A ^T and A ⁿ .	K1	CO2	2M
1	d	Given that $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$, find the eigen values of A.	К3	CO2	2M
	e	State Lagrange's mean value theorem.	K1	CO3	2M
	f	Give an example of a function for which Rolle's theorem is not applicable.	К3	CO3	2M
	g	Find the Jacobian for the functions $x = r \cos \theta$; $y = r \sin \theta$.	K2	CO4	2M _.
	h	State Euler's theorem for function of three variables.	K1	CO4	2M
:	i	Evaluate $\int_{0}^{3} \int_{0}^{1} (x^2 + 3y^2) dy dx$	K4	CO5	2M
	j	Change the order of integration $\int_{0}^{1} \int_{x}^{\sqrt{x}} f(x,y) dy dx$	К3	CO5	2M

PART-B

Answer either 'a' or 'b' from each question of **PART-B** ($5 \times 10M = 50M$)

Q.No		Questions K	(L	CO	M
2		Unit-I			
	a	$\begin{bmatrix} -2 & -4 & 1-x \end{bmatrix}$	≾ 4	CO1	5M
	u	less than 3. ii) Solve the following system of equations x + 2y + 3z = 0; $2x + 3y + z = 0$; 4x + 5y + 4z = 0; $x + 2y - 2z = 0$.	К3	CO1	5M
		OR			

	i) By reducing the fell	i	_	
	i) By reducing the following matrix A into Normal form find the rank of A $ \begin{bmatrix} -1 & 2 & -1 & -2 \\ -2 & 5 & 3 & 0 \\ 1 & 0 & 1 & 10 \end{bmatrix}. $	K	4 CO	5M
	ii) Discuss the consistency of the system and if consistent, solve the equations: $x + y + z = 6$; $x + 2y + 3z = 14$; $2x + 4y + 7z = 30$.	K3	CO	5M
	Unit-II Verify Cayley-Hamilton theorem and find A ⁸ , Where	-	1	
3	$\begin{bmatrix} a & A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}.$	K3	CO2	10M
	OR	1	_!	<u> </u>
	Reduce the quadratic form $2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 4x_2x_3$ to canonical form by an orthogonal transformation. Also find the rank, index, signature and nature of the quadratic form.	К3	CO2	10M
	Unit-III			* 1
	i) Verify Rolle's theorem for the function $f(x) = (x - a)^m (x - b)^n$ in [a, b], where m, n are positive integers.	КЗ	CO3	5M
	ii) Expand $f(x) = x^5 - x^4 + x^3 - x^2 + x - 1$ in powers of $(x - 1)$.	К3	CO3	5M
4	i) If $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{\sqrt{x}}$, prove that c of Cauchy's mean value theorem is geometric mean between a and b, $a > 0$, $b > 0$. ii) Expand 5^x up to the first three non-zero terms of the series using	КЗ	CO3	5M
	iviaciaurin's theorem.	K3	CO3	5M
	Unit-IV			
	a i) If $u = \frac{e^{x+y+z}}{e^x + e^y + e^z}$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 2u$.	К3	CO4	5M
5	ii) Find the extreme values of $x^3 + y^3 - 3axy$, $a > 0$.	K3	CO4	5M
	OR			and the state of t
	b i) If y log(cos x) = x log(sin y), find $\frac{dy}{dx}$.	K3	CO4	5M
	ii) Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.	К3	CO4	5M
	Unit-V			
6	Evaluate $\iint x^2 dx dy$, over the region in the first quadrant enclosed by the rectangular hyperbola $xy = 16$, the lines $y = x$, $y = 0$ and $x = 8$.	К3	CO5	10M
ŀ	OR e logy e ^x			r.
	b Evaluate $\int_{1}^{\infty} \int_{1}^{\infty} \int_{1}^{\infty} \log z dx dy dz$.	КЗ	CO5	10M
KL: Bloor	ns Taxonomy Knowledge Level CO: Course Outcome M: Marks			7

(AUTONOMOUS)

I B.Tech I Semester Regular & Supple. Examinations, December-2024

R23

Sub Code: R23CC1102

INTRODUCTION TO PROGRAMMING

Time: 3 hours

(Common to All Branches)

Max. Marks: 70

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answering all the questions from Part-A is compulsory ($10 \times 2M = 20M$)

Q.No		Questions Questions	KL	CO	M
	a	Describe type conversion with examples of implicit and explicit conversion	K3	1	2M
	b	Examine how the flowchart tool Dia can be used to represent an algorithm.	K4	1	2M
	С	Demonstrate the use of a for loop to print the first 10 natural numbers	K3	2	2M
	d	List the conditional statements with syntax.	K3	2	2M
	е	Differentiate 1D array verses 2D array with an example?	К3	3	2M
1	f	How do you read and write strings in C? Provide a simple syntax.	K4	3	2M
	g	Demonstrate the difference between ptr++ and ++ptr using a pointer to an integer.	К3	4	2M
	h	Compare and contrast between structure and union?	K3	4	2M
	i	Write C program to demonstrate the difference between function declaration and definition	K4	5	2M
	j	Describe any 3 built-in functions to perform basic file operations in C?	K3	5	2M

PART-B

Answer either 'a' or 'b' from each question of **PART-B** ($5 \times 10M = 50M$)

		Answer either 'a' or 'b' from each question of PART-B (5 x 101v1 – 501v1)	777	-00	3.5
Q.No		Questions	KL	CO	M
		Unit-I			
		i) Analyze the process of compilation and execution in programming languages.	K4	1	5M
	a	ii) Explain the role of the ALU and program counter in the basic organization of a computer.	К3	1	5M
2		OR			
	b	i) How does the top-down approach help in problem-solving, and how is it different from the bottom-up approach?	K3	1	5M
		ii) Discuss the impact of time and space complexities on algorithm performance.	K3	1	5M
3	 	Unit-II			
	a	i) Write C program that takes an integer input from the user and prints whether the number is even or odd.	K4	2	5M
	l "	ii) Briefly explain Switch statement with example.	K3	2	5M
		OR			
	b	i) Write C program that prints the first 10 Fibonacci numbers using a while	K4	2	5M
		loop.	ļ. <u>.</u>		
	1	ii) Demonstrate Break and Continue statements with example.	K3	2_	5M

	T	Unit-III	<u> </u>		<u> </u> 			
		i) Write a program to search for a given number in an array of integers.	K4	3	5M			
	a	ii) Explain string manipulation functions with examples. Use strcpy, strcat and strlen.	K3	3	5M			
4		OR	1	<u>. </u>				
	b	i) Describe the memory model of arrays in C. How are array elements stored sequentially?	K3	3	5M			
		ii) Write C program to read an array of strings and display the longest string among them.	K4	3	5M			
		Unit-IV	<u> </u>	<u></u>				
	a.	i) Write C program to define a structure Student with fields name, age, and marks. Input and display data for a student.	K4	4	5M			
5		ii) Demonstrate the memory usage of a structure and a union. Compare their sizes.	К3	4	5M'			
	b	i) Create a program that swaps the values of two variables using pointers	K3	4	5M			
		ii) Briefly explain the concept of pointers in C. Provide an example illustrating their use.	К3	4	5M			
	Unit-V							
		i) Discuss about the type of functions in C. Provide an example to illustrate it.	K3	5	5M			
	a	ii) Examine the difference between pass by value and pass by reference in C functions	K4	5	5M			
6		OR	!					
Ŭ		i) Write C program to count the number of characters, words, and lines in a text file.	К3	5	5M			
	b	ii) Develop a function that appends new data to an existing file without overwriting its content	К3	5	5M			

KL: Blooms Taxonomy Knowledge Level

CO: Course Outcome

M: Marks

I B.Tech I Semester Regular & Supple. Examinations, December-2024

Sub Code: R23CC1106

Time: 3 hours

ENGINEERING PHYSICS

(CE, EEE, ME, ECE, CSE (AIML), DS, CS, AIML)

Max. Marks: 70

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answering all the questions from Part-A is compulsory (10 x 2M = 20M)

Q. No		Questions	KL	CO	M
	a	Mention the differences between spontaneous and stimulated emissions.	K1	1	2M
	b	Define acceptance cone.	K1	1	2M
	С	Define space lattice and unit cell.	K1	2	2M
	ď	Draw the planes of a cubic cell (i) (111) (ii) (101).	K4	2	2M
4	е	Define magnetic susceptibility and permeability.	K1	3	2M
1	f	Write the properties of super conductors	K1	3	2M
	g	State Heisenberg's uncertainty principle.	K1	4	2M
	h	Write any two merits of classical free electron theory.	K1	4	2M
	i	State Hall effect.	K1	5	2M
	j	What are thermoelectric materials?	K1	5	2M

PART-B

Answer either 'a' or 'b' from each question of **PART-B** (5 x 10M = 50M)

Q. No		Questions	KL	CO	Marks
		Unit-I			
	а	i) With the help of suitable diagrams, explain the principle, construction and working of a Ruby laser.	K4	, 1	7M
2		ii) Mention the applications of lasers in the different fields.	K1	,1	3M
		OR			
	ь	i) Explain the construction and working of a step-index fiber.	K2	1	5M
		ii) Discuss the propagation of light signal in step-index fiber.	КЗ	1	5M
1	<u> </u>	Unit-II			
1	a	i) Prove that FCC is more closed packed structure than the SC and BCC.	КЗ	2	10M
1		OR			
3	b	i) Derive an expression for the interplanar spacing between two adjacent planes of Miller indices (h k l) in a cubic lattice of edge a.	КЗ	2	7M
		ii) Calculate the interplanar spacing for (111) plane in an SC lattice, where lattice constant is 2.4×10^{-10} m.	K4	2	ЗМ
		Unit-III	·		
		i) Explain atomic origin of magnetism in magnetic materials.	K2	3	6M
4	a	ii) Mention the differences between soft and hard magnetic materials.	K4	3	4M
4		OR			
	ь	i) What are the differences between type-1 and type -2 super conductors?	K2	3	4M
L		ii) Explain AC and DC Josephson effects.	K1	3	6M
5		Unit-IV			
	а	i) Determine the energy of a particle enclosed in one-dimensional potential box of infinite height.	K5	4	7M
		ii) Find the energy of an electron for the first excited state in one dimensional potential box of width $4 A^0$.	K4	4	ЗМ

briefly the quantum free electron theory. The Fermi-Dirac distribution function. Plot this function for various res including 0K. Unit-V	K2 K2	4	3M 7M				
res including 0K. Unit-V	K2	4	7M				
uish conductors, semiconductors and insulators.	КЗ	5	6M				
re extrinsic semiconductors and explain?	K1	5	4M				
OR							
e the types of smart materials?	K1	5	4M				
n the principle and properties of magneto rheological fluids-cological fluids.	K2	5	6M				
e n	OR the types of smart materials? the principle and properties of magneto rheological fluids-	OR the types of smart materials? K1 the principle and properties of magneto rheological fluids-	OR the types of smart materials? K1 5 the principle and properties of magneto rheological fluids-				

KL: Blooms Taxonomy Knowledge Level

CO: Course Outcome

M: Marks

I B.Tech I Semester Regular & Supple. Examinations, December-2024

Sub C		R23CC1107 BASIC ELECTRICAL & ELECTRONICS ENGINEER	INC		KZ3
Time:				70	
rime.	J 1100	PART-A:(EEE)		, , ,	
Q.No	T 1	Questions	KL	CO	M
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	a	What are the limitations of Ohms law?	K1	1	1M
	ь	What is the significance of commutator of a DC generator?	К3	2	1M
1	С	What are the drawbacks of non-conventional energy sources?	К3	3	1M
	d	Define phase, peak factor and form factor of an AC wave form	K1	1	1M
	e	What is meant by controlling and damping torques of an instrument?	КЗ	4	1M
		Unit-I			
		i)Classify the electric circuit elements and explain each of them	K1	1	5M
		ii)Find the current (I) flowing through 6 Ohms resistor of the circuit shown	K2	1	
		below using superposition theorem	ĺ		
		5Ω 6Ω 15Ω	1		
	a				
	a	20 V 30 V			5M
		 			
		T $S^{10\Omega}$ 15 Ω T			
2			<u> </u>	<u> </u>	
		OR	K2	1	5M
		i) Draw the impedance and power triangles for series RL circuit.	K2	$\frac{1}{1}$	3101
		ii) a) Determine the form factor and amplitude factor of the waveform	KZ	1	
		shown below			ļ
		ⁱ ∱	ļ		
	b	500 A			5M
			İ		1
			ļ		
		0 1 2 3 4 t			
	1	Unit-II			
		i)With a neat diagram explain the construction and working principle of DC	K3	2	10M
2	a	motor, clearly discuss each part of the motor	<u> </u>	<u> </u>	10,141
3		OR			
<u> </u>		i)Explain the principle of operation of Three-phase Induction motor	K3	2	5M
	b	ii)Explain the construction and working principle of Moving Iron	K3	2	5M
		instruments	<u> </u>	1	
		Unit-III	1		1
		i)What are the advantages and disadvantages of renewable and non-	K2	3	5M
	a	renewable energy sources	1770	 _	53.A
		ii) With a neat sketch, explain the hydel power generation	K3	3	5M
4		OR	172	1 2	
		i) With a neat sketch explain the wind power generation	K3	3	5M
	Ъ		K3	4	57.5
		ii)Write down any six safety precautions used in electrical system			5M

PART-B (ECE)

Q.No		Questions	KL	CO	M
	a	What is Zener Effect?	K1	1	1M
	b	What is the significance of amplifier?	K2	2	1M
5	С	Give the truth table of XNOR gate	K1	3	1M
	d	What is the significance of FLIP-FLOP?	K1	3	1M
ļ	e	What is the use of counter in digital electronics?	K2	4	1M
		Unit-IV		·	1
1		i)Explain the characteristics of Zener diode	K2	1	5M
6	a 	ii)Explain the characteristics of NPN transistor	K2	1	5M
1		OR			1
	b	i) With a neat circuit diagram explain the working of common emitter amplifier along with its frequency response	K1	1	10M
		Unit-V	7 2		
7	a	i) Explain the operation of a half wave bridge rectifier with a neat circuit and also draw the relevant waveforms.	K2	2	10M
	-	OR	·•		
	b	i) Explain the block diagram of an electronic instrumentation system and clearly explain each block of it.	K1	3	10M
		Unit-VI			
	a	i) Explain AND, NOR, XOR and NOT gates along with their truth tables	K1	3	5M
		ii) Design & implement half adder with truth table.	K3	3	5M
8		OR OR			,
		i)Explain J-K flip-flop with relevant truth tables	K2	4	5M
	b	ii)Explain about serial input and output registers what is meant by ring counter?	K2	4	5M

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M: Marks

2

(AUTONOMOUS)

I B.Tech I Semester Regular & Supple. Examinations, December-2024

Sub Code: R23CC1108

ENGINEERING GRAPHICS

Time: 3 hours

(CE, EEE, ME, CSE (AIML), DS, CS, AIML) Max. Marks: 70 Note: Answer All **FIVE** Questions.

R23

All Questions Carry Equal Marks (5 X 14 = 70M)

Q.No		All Questions Carry Equal Marks (5 X 14 = 70M) Questions	KL	со	M		
\(\frac{1}{2}\)		Unit-I					
	a	Draw the curve traced by a point on the circumference of a circle of 40 mm diameter, which rolls on straight line for one complete revolution.	К3	CO1	14M		
1		OR					
		Draw a diagonal scale of RF=3/100, showing meters, decimeters and					
	b	centimeters and to measure up to 5 meters. Show the length of 3.69 meters	K2	CO1	14M		
		on it.					
		Unit-II					
		A line AB, 80 mm long, is inclined at 45° to the H.P. and its top view makes					
	a	an angle of 60° with the V.P. The end A is in the H.P. and 15 mm in front of	К3	CO2	14M		
		V.P. Draw its front view and finds its true inclination with the V.P.					
2	·	OR					
		A rectangle of 30 mm and 60 mm sides is resting on HP on one of its small					
	b	side which is 30° inclined to VP, while the surface of the plane makes 45°	К3	CO2	14M		
		inclination with HP. Draw it's projections.					
		Unit-III					
		A pentagonal pyramid, having base with a 25 mm side and 60 mm long axis,					
	a	rests on an edge of the base on the H.P. with an axis perpendicular to the	K4	CO3	14M		
3		V.P. Draw its projections when the base is 15 mm in front of the V.P.					
	OR						
	 	A cone 60 mm diameter and 50 mm axis is resting on one generator on HP	К3	CO3	14M		
	b	Draw its projections.	KS	COS	TÆMT		
4		Unit-IV	_				
		A pentagonal pyramid of 30 mm side of base and height of 45 mm stands on					
		its base with an edge of the base parallel to VP. A section plane making an	K4	CO4	14M		
	a	angle of 45° to HP cuts the pyramid at a distance of 15mm from apex. Draw	K4	CU4	14111		
		its top view and front view.					
		OR		·			
	b	A hexagonal prism of base side 30 mm and height 45 mm is resting on one	K4	CO4	14M		
		of its ends on the HP with two of its lateral faces parallel to the VP. It is cut					

KL: Blooms Taxonomy Knowledge Level CO: Course Outcome M:Marks

2